feat: Add smart paragraph merging mode with AI grouping
Some checks failed
Deploy Documentation / deploy (push) Has been cancelled
Some checks failed
Deploy Documentation / deploy (push) Has been cancelled
- Add "smart" split mode that uses LLM to intelligently merge related paragraphs - Implement two-step approach: analyze text structure, then group by semantic relevance - Add paragraph_merging.py with analysis and grouping prompts - Update UI to support smart mode selection with auto-detect hint - Add i18n translations for smart mode (en_US, zh_CN) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -124,7 +124,13 @@ class StandardPipeline(LinearVideoPipeline):
|
|||||||
else: # fixed
|
else: # fixed
|
||||||
self._report_progress(ctx.progress_callback, "splitting_script", 0.05)
|
self._report_progress(ctx.progress_callback, "splitting_script", 0.05)
|
||||||
split_mode = ctx.params.get("split_mode", "paragraph")
|
split_mode = ctx.params.get("split_mode", "paragraph")
|
||||||
ctx.narrations = await split_narration_script(text, split_mode=split_mode)
|
target_segments = ctx.params.get("target_segments", 8)
|
||||||
|
ctx.narrations = await split_narration_script(
|
||||||
|
text,
|
||||||
|
split_mode=split_mode,
|
||||||
|
llm_service=self.llm if split_mode == "smart" else None,
|
||||||
|
target_segments=target_segments
|
||||||
|
)
|
||||||
logger.info(f"✅ Split script into {len(ctx.narrations)} segments (mode={split_mode})")
|
logger.info(f"✅ Split script into {len(ctx.narrations)} segments (mode={split_mode})")
|
||||||
logger.info(f" Note: n_scenes={n_scenes} is ignored in fixed mode")
|
logger.info(f" Note: n_scenes={n_scenes} is ignored in fixed mode")
|
||||||
|
|
||||||
|
|||||||
@@ -29,6 +29,13 @@ from pixelle_video.prompts.image_generation import (
|
|||||||
)
|
)
|
||||||
from pixelle_video.prompts.style_conversion import build_style_conversion_prompt
|
from pixelle_video.prompts.style_conversion import build_style_conversion_prompt
|
||||||
|
|
||||||
|
# Paragraph merging (two-step: analysis + grouping)
|
||||||
|
from pixelle_video.prompts.paragraph_merging import (
|
||||||
|
build_paragraph_analysis_prompt,
|
||||||
|
build_paragraph_grouping_prompt,
|
||||||
|
build_paragraph_merging_prompt, # Legacy support
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
# Narration builders
|
# Narration builders
|
||||||
@@ -40,6 +47,11 @@ __all__ = [
|
|||||||
"build_image_prompt_prompt",
|
"build_image_prompt_prompt",
|
||||||
"build_style_conversion_prompt",
|
"build_style_conversion_prompt",
|
||||||
|
|
||||||
|
# Paragraph merging (two-step)
|
||||||
|
"build_paragraph_analysis_prompt",
|
||||||
|
"build_paragraph_grouping_prompt",
|
||||||
|
"build_paragraph_merging_prompt", # Legacy
|
||||||
|
|
||||||
# Image style presets
|
# Image style presets
|
||||||
"IMAGE_STYLE_PRESETS",
|
"IMAGE_STYLE_PRESETS",
|
||||||
"DEFAULT_IMAGE_STYLE",
|
"DEFAULT_IMAGE_STYLE",
|
||||||
|
|||||||
202
pixelle_video/prompts/paragraph_merging.py
Normal file
202
pixelle_video/prompts/paragraph_merging.py
Normal file
@@ -0,0 +1,202 @@
|
|||||||
|
# Copyright (C) 2025 AIDC-AI
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Paragraph merging prompt
|
||||||
|
|
||||||
|
For intelligently merging short paragraphs into longer segments suitable for video storyboards.
|
||||||
|
Uses a two-step approach: first analyze, then group.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
|
||||||
|
# Step 1: Analyze text and recommend segment count
|
||||||
|
PARAGRAPH_ANALYSIS_PROMPT = """# 任务定义
|
||||||
|
你是一个专业的视频分镜规划师。请分析以下文本,推荐最佳分镜数量。
|
||||||
|
|
||||||
|
# 核心任务
|
||||||
|
分析文本结构,根据以下原则推荐分镜数量:
|
||||||
|
|
||||||
|
## 分析原则
|
||||||
|
1. **语义边界**:识别场景切换、话题转换、情绪变化点
|
||||||
|
2. **叙事完整性**:保持对话回合完整(问-答不拆分)
|
||||||
|
3. **时长控制**:每个分镜语音时长建议 15-45 秒(约 60-180 字)
|
||||||
|
4. **视觉多样性**:确保分镜之间有足够的画面变化
|
||||||
|
|
||||||
|
## 文本信息
|
||||||
|
- 总段落数:{total_paragraphs}
|
||||||
|
- 预估总字数:{total_chars} 字
|
||||||
|
- 预估总时长:{estimated_duration} 秒
|
||||||
|
|
||||||
|
## 输入段落预览
|
||||||
|
{paragraphs_preview}
|
||||||
|
|
||||||
|
# 输出格式
|
||||||
|
返回 JSON 格式的分析结果:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{{
|
||||||
|
"recommended_segments": 8,
|
||||||
|
"reasoning": "文本包含开场设定、分手对话、争吵升级、离别等多个场景切换点...",
|
||||||
|
"scene_boundaries": [
|
||||||
|
{{"after_paragraph": 3, "reason": "场景从背景介绍转入对话"}},
|
||||||
|
{{"after_paragraph": 7, "reason": "对话情绪升级"}},
|
||||||
|
...
|
||||||
|
]
|
||||||
|
}}
|
||||||
|
```
|
||||||
|
|
||||||
|
# 重要提醒
|
||||||
|
1. recommended_segments 应该在 3-15 之间
|
||||||
|
2. 每个分镜平均字数建议 80-200 字
|
||||||
|
3. scene_boundaries 标记主要的场景切换点,用于后续分组参考
|
||||||
|
4. 只输出 JSON,不要添加其他解释
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
# Step 2: Group paragraphs based on analysis
|
||||||
|
PARAGRAPH_GROUPING_PROMPT = """# 任务定义
|
||||||
|
你是一个专业的文本分段专家。根据分析结果,将段落分组。
|
||||||
|
|
||||||
|
# 核心任务
|
||||||
|
将 {total_paragraphs} 个段落(编号 0 到 {max_index})分成 **{target_segments}** 个分组。
|
||||||
|
|
||||||
|
# 分析建议
|
||||||
|
{analysis_hint}
|
||||||
|
|
||||||
|
# 分组原则
|
||||||
|
1. **语义关联**:将描述同一场景、同一对话回合的段落放在一起
|
||||||
|
2. **对话完整**:一轮完整的对话(问与答)应该在同一分组
|
||||||
|
3. **场景统一**:同一时间、地点发生的事件应该在同一分组
|
||||||
|
4. **长度均衡**:每个分组的字数尽量均衡(目标 80-200 字/分组)
|
||||||
|
5. **顺序保持**:分组内段落必须连续
|
||||||
|
|
||||||
|
# 输入段落
|
||||||
|
{paragraphs_preview}
|
||||||
|
|
||||||
|
# 输出格式
|
||||||
|
返回 JSON 格式,包含每个分组的起始和结束索引(包含)。
|
||||||
|
|
||||||
|
```json
|
||||||
|
{{
|
||||||
|
"groups": [
|
||||||
|
{{"start": 0, "end": 3}},
|
||||||
|
{{"start": 4, "end": 7}},
|
||||||
|
{{"start": 8, "end": 12}}
|
||||||
|
]
|
||||||
|
}}
|
||||||
|
```
|
||||||
|
|
||||||
|
# 重要提醒
|
||||||
|
1. 必须输出正好 {target_segments} 个分组
|
||||||
|
2. 分组必须覆盖所有段落(从 0 到 {max_index})
|
||||||
|
3. 每个分组的 start 必须等于上一个 end + 1
|
||||||
|
4. 只输出 JSON,不要添加其他解释
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def build_paragraph_analysis_prompt(
|
||||||
|
paragraphs: List[str],
|
||||||
|
) -> str:
|
||||||
|
"""
|
||||||
|
Build prompt for analyzing text and recommending segment count
|
||||||
|
|
||||||
|
Args:
|
||||||
|
paragraphs: List of original paragraphs
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Formatted prompt for analysis
|
||||||
|
"""
|
||||||
|
# Calculate stats
|
||||||
|
total_chars = sum(len(p) for p in paragraphs)
|
||||||
|
# Estimate: ~250 chars/minute for Chinese speech
|
||||||
|
estimated_duration = int(total_chars / 250 * 60)
|
||||||
|
|
||||||
|
# Create preview for each paragraph (first 50 chars)
|
||||||
|
previews = []
|
||||||
|
for i, para in enumerate(paragraphs):
|
||||||
|
preview = para[:50].replace('\n', ' ')
|
||||||
|
char_count = len(para)
|
||||||
|
if len(para) > 50:
|
||||||
|
preview += "..."
|
||||||
|
previews.append(f"[{i}] ({char_count}字) {preview}")
|
||||||
|
|
||||||
|
paragraphs_preview = "\n".join(previews)
|
||||||
|
|
||||||
|
return PARAGRAPH_ANALYSIS_PROMPT.format(
|
||||||
|
paragraphs_preview=paragraphs_preview,
|
||||||
|
total_paragraphs=len(paragraphs),
|
||||||
|
total_chars=total_chars,
|
||||||
|
estimated_duration=estimated_duration
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def build_paragraph_grouping_prompt(
|
||||||
|
paragraphs: List[str],
|
||||||
|
target_segments: int,
|
||||||
|
analysis_result: dict = None,
|
||||||
|
) -> str:
|
||||||
|
"""
|
||||||
|
Build prompt for grouping paragraphs based on analysis
|
||||||
|
|
||||||
|
Args:
|
||||||
|
paragraphs: List of original paragraphs
|
||||||
|
target_segments: Target number of segments (from analysis)
|
||||||
|
analysis_result: Optional analysis result for context
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Formatted prompt for grouping
|
||||||
|
"""
|
||||||
|
# Create preview with char counts
|
||||||
|
previews = []
|
||||||
|
for i, para in enumerate(paragraphs):
|
||||||
|
preview = para[:50].replace('\n', ' ')
|
||||||
|
char_count = len(para)
|
||||||
|
if len(para) > 50:
|
||||||
|
preview += "..."
|
||||||
|
previews.append(f"[{i}] ({char_count}字) {preview}")
|
||||||
|
|
||||||
|
paragraphs_preview = "\n".join(previews)
|
||||||
|
|
||||||
|
# Build analysis hint if available
|
||||||
|
analysis_hint = ""
|
||||||
|
if analysis_result:
|
||||||
|
if "reasoning" in analysis_result:
|
||||||
|
analysis_hint += f"分析理由:{analysis_result['reasoning']}\n"
|
||||||
|
if "scene_boundaries" in analysis_result:
|
||||||
|
boundaries = [str(b.get("after_paragraph", "")) for b in analysis_result["scene_boundaries"]]
|
||||||
|
analysis_hint += f"建议场景切换点(段落后):{', '.join(boundaries)}"
|
||||||
|
|
||||||
|
if not analysis_hint:
|
||||||
|
analysis_hint = "无额外分析信息"
|
||||||
|
|
||||||
|
return PARAGRAPH_GROUPING_PROMPT.format(
|
||||||
|
paragraphs_preview=paragraphs_preview,
|
||||||
|
target_segments=target_segments,
|
||||||
|
total_paragraphs=len(paragraphs),
|
||||||
|
max_index=len(paragraphs) - 1,
|
||||||
|
analysis_hint=analysis_hint
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Legacy support - keep original function name for backward compatibility
|
||||||
|
def build_paragraph_merging_prompt(
|
||||||
|
paragraphs: List[str],
|
||||||
|
target_segments: int = 8,
|
||||||
|
) -> str:
|
||||||
|
"""
|
||||||
|
Legacy function for backward compatibility.
|
||||||
|
Now delegates to build_paragraph_grouping_prompt.
|
||||||
|
"""
|
||||||
|
return build_paragraph_grouping_prompt(paragraphs, target_segments)
|
||||||
@@ -208,7 +208,9 @@ async def generate_narrations_from_content(
|
|||||||
|
|
||||||
async def split_narration_script(
|
async def split_narration_script(
|
||||||
script: str,
|
script: str,
|
||||||
split_mode: Literal["paragraph", "line", "sentence"] = "paragraph",
|
split_mode: Literal["paragraph", "line", "sentence", "smart"] = "paragraph",
|
||||||
|
llm_service = None,
|
||||||
|
target_segments: int = 8,
|
||||||
) -> List[str]:
|
) -> List[str]:
|
||||||
"""
|
"""
|
||||||
Split user-provided narration script into segments
|
Split user-provided narration script into segments
|
||||||
@@ -219,6 +221,9 @@ async def split_narration_script(
|
|||||||
- "paragraph": Split by double newline (\\n\\n), preserve single newlines within paragraphs
|
- "paragraph": Split by double newline (\\n\\n), preserve single newlines within paragraphs
|
||||||
- "line": Split by single newline (\\n), each line is a segment
|
- "line": Split by single newline (\\n), each line is a segment
|
||||||
- "sentence": Split by sentence-ending punctuation (。.!?!?)
|
- "sentence": Split by sentence-ending punctuation (。.!?!?)
|
||||||
|
- "smart": First split by paragraph, then use LLM to intelligently merge related paragraphs
|
||||||
|
llm_service: LLM service instance (required for "smart" mode)
|
||||||
|
target_segments: Target number of segments for "smart" mode (default: 8)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of narration segments
|
List of narration segments
|
||||||
@@ -227,7 +232,31 @@ async def split_narration_script(
|
|||||||
|
|
||||||
narrations = []
|
narrations = []
|
||||||
|
|
||||||
if split_mode == "paragraph":
|
if split_mode == "smart":
|
||||||
|
# Smart mode: first split by paragraph, then merge intelligently
|
||||||
|
if llm_service is None:
|
||||||
|
raise ValueError("llm_service is required for 'smart' split mode")
|
||||||
|
|
||||||
|
# Step 1: Split by paragraph first
|
||||||
|
paragraphs = re.split(r'\n\s*\n', script)
|
||||||
|
paragraphs = [p.strip() for p in paragraphs if p.strip()]
|
||||||
|
logger.info(f" Initial split: {len(paragraphs)} paragraphs")
|
||||||
|
|
||||||
|
# Step 2: Merge intelligently using LLM
|
||||||
|
# If target_segments is None, merge_paragraphs_smart will auto-analyze
|
||||||
|
if target_segments is not None and len(paragraphs) <= target_segments:
|
||||||
|
# No need to merge if already within target
|
||||||
|
logger.info(f" Paragraphs count ({len(paragraphs)}) <= target ({target_segments}), no merge needed")
|
||||||
|
narrations = paragraphs
|
||||||
|
else:
|
||||||
|
narrations = await merge_paragraphs_smart(
|
||||||
|
llm_service=llm_service,
|
||||||
|
paragraphs=paragraphs,
|
||||||
|
target_segments=target_segments # Can be None for auto-analysis
|
||||||
|
)
|
||||||
|
logger.info(f"✅ Smart split: {len(paragraphs)} paragraphs -> {len(narrations)} segments")
|
||||||
|
|
||||||
|
elif split_mode == "paragraph":
|
||||||
# Split by double newline (paragraph mode)
|
# Split by double newline (paragraph mode)
|
||||||
# Preserve single newlines within paragraphs
|
# Preserve single newlines within paragraphs
|
||||||
paragraphs = re.split(r'\n\s*\n', script)
|
paragraphs = re.split(r'\n\s*\n', script)
|
||||||
@@ -266,6 +295,150 @@ async def split_narration_script(
|
|||||||
return narrations
|
return narrations
|
||||||
|
|
||||||
|
|
||||||
|
async def merge_paragraphs_smart(
|
||||||
|
llm_service,
|
||||||
|
paragraphs: List[str],
|
||||||
|
target_segments: int = None, # Now optional - auto-analyze if not provided
|
||||||
|
max_retries: int = 3,
|
||||||
|
) -> List[str]:
|
||||||
|
"""
|
||||||
|
Use LLM to intelligently merge paragraphs based on semantic relevance.
|
||||||
|
|
||||||
|
Two-step approach:
|
||||||
|
1. If target_segments is not provided, first analyze text to recommend optimal count
|
||||||
|
2. Then group paragraphs based on the target count
|
||||||
|
|
||||||
|
Args:
|
||||||
|
llm_service: LLM service instance
|
||||||
|
paragraphs: List of original paragraphs
|
||||||
|
target_segments: Target number of merged segments (auto-analyzed if None)
|
||||||
|
max_retries: Maximum retry attempts for each step
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of merged paragraphs
|
||||||
|
"""
|
||||||
|
from pixelle_video.prompts import (
|
||||||
|
build_paragraph_analysis_prompt,
|
||||||
|
build_paragraph_grouping_prompt
|
||||||
|
)
|
||||||
|
|
||||||
|
# ========================================
|
||||||
|
# Step 1: Analyze and recommend segment count (if not provided)
|
||||||
|
# ========================================
|
||||||
|
if target_segments is None:
|
||||||
|
logger.info(f"Analyzing {len(paragraphs)} paragraphs to recommend segment count...")
|
||||||
|
|
||||||
|
analysis_prompt = build_paragraph_analysis_prompt(paragraphs)
|
||||||
|
analysis_result = None
|
||||||
|
|
||||||
|
for attempt in range(1, max_retries + 1):
|
||||||
|
try:
|
||||||
|
response = await llm_service(
|
||||||
|
prompt=analysis_prompt,
|
||||||
|
temperature=0.3,
|
||||||
|
max_tokens=1500
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.debug(f"Analysis response length: {len(response)} chars")
|
||||||
|
|
||||||
|
result = _parse_json(response)
|
||||||
|
|
||||||
|
if "recommended_segments" not in result:
|
||||||
|
raise KeyError("Missing 'recommended_segments' in analysis")
|
||||||
|
|
||||||
|
target_segments = result["recommended_segments"]
|
||||||
|
analysis_result = result
|
||||||
|
|
||||||
|
# Validate range
|
||||||
|
if target_segments < 3:
|
||||||
|
target_segments = 3
|
||||||
|
elif target_segments > 15:
|
||||||
|
target_segments = 15
|
||||||
|
|
||||||
|
reasoning = result.get("reasoning", "N/A")
|
||||||
|
logger.info(f"✅ Analysis complete: recommended {target_segments} segments")
|
||||||
|
logger.info(f" Reasoning: {reasoning[:100]}...")
|
||||||
|
break
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Analysis attempt {attempt} failed: {e}")
|
||||||
|
if attempt >= max_retries:
|
||||||
|
# Fallback: use simple heuristic
|
||||||
|
target_segments = max(3, min(12, len(paragraphs) // 3))
|
||||||
|
logger.warning(f"Using fallback: {target_segments} segments (paragraphs/3)")
|
||||||
|
analysis_result = None
|
||||||
|
break
|
||||||
|
logger.info("Retrying analysis...")
|
||||||
|
else:
|
||||||
|
analysis_result = None
|
||||||
|
logger.info(f"Using provided target: {target_segments} segments")
|
||||||
|
|
||||||
|
# ========================================
|
||||||
|
# Step 2: Group paragraphs
|
||||||
|
# ========================================
|
||||||
|
logger.info(f"Grouping {len(paragraphs)} paragraphs into {target_segments} segments...")
|
||||||
|
|
||||||
|
grouping_prompt = build_paragraph_grouping_prompt(
|
||||||
|
paragraphs=paragraphs,
|
||||||
|
target_segments=target_segments,
|
||||||
|
analysis_result=analysis_result
|
||||||
|
)
|
||||||
|
|
||||||
|
for attempt in range(1, max_retries + 1):
|
||||||
|
try:
|
||||||
|
response = await llm_service(
|
||||||
|
prompt=grouping_prompt,
|
||||||
|
temperature=0.3,
|
||||||
|
max_tokens=2000
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.debug(f"Grouping response length: {len(response)} chars")
|
||||||
|
|
||||||
|
result = _parse_json(response)
|
||||||
|
|
||||||
|
if "groups" not in result:
|
||||||
|
raise KeyError("Invalid response format: missing 'groups'")
|
||||||
|
|
||||||
|
groups = result["groups"]
|
||||||
|
|
||||||
|
# Validate count
|
||||||
|
if len(groups) != target_segments:
|
||||||
|
logger.warning(
|
||||||
|
f"Grouping attempt {attempt}: expected {target_segments} groups, got {len(groups)}"
|
||||||
|
)
|
||||||
|
if attempt < max_retries:
|
||||||
|
continue
|
||||||
|
logger.warning(f"Accepting {len(groups)} groups after {max_retries} attempts")
|
||||||
|
|
||||||
|
# Validate group boundaries
|
||||||
|
for i, group in enumerate(groups):
|
||||||
|
if "start" not in group or "end" not in group:
|
||||||
|
raise ValueError(f"Group {i} missing 'start' or 'end'")
|
||||||
|
if group["start"] > group["end"]:
|
||||||
|
raise ValueError(f"Group {i} has invalid range: start > end")
|
||||||
|
if group["start"] < 0 or group["end"] >= len(paragraphs):
|
||||||
|
raise ValueError(f"Group {i} has out-of-bounds indices")
|
||||||
|
|
||||||
|
# Merge paragraphs based on groups
|
||||||
|
merged = []
|
||||||
|
for group in groups:
|
||||||
|
start, end = group["start"], group["end"]
|
||||||
|
merged_text = "\n\n".join(paragraphs[start:end + 1])
|
||||||
|
merged.append(merged_text)
|
||||||
|
|
||||||
|
logger.info(f"✅ Successfully merged into {len(merged)} segments")
|
||||||
|
return merged
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Grouping attempt {attempt} failed: {e}")
|
||||||
|
if attempt >= max_retries:
|
||||||
|
raise
|
||||||
|
logger.info("Retrying grouping...")
|
||||||
|
|
||||||
|
# Fallback: should not reach here
|
||||||
|
return paragraphs
|
||||||
|
|
||||||
|
|
||||||
async def generate_image_prompts(
|
async def generate_image_prompts(
|
||||||
llm_service,
|
llm_service,
|
||||||
narrations: List[str],
|
narrations: List[str],
|
||||||
@@ -489,8 +662,8 @@ def _parse_json(text: str) -> dict:
|
|||||||
except json.JSONDecodeError:
|
except json.JSONDecodeError:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
# Try to find any JSON object in the text
|
# Try to find any JSON object with known keys (including analysis keys)
|
||||||
json_pattern = r'\{[^{}]*(?:"narrations"|"image_prompts")\s*:\s*\[[^\]]*\][^{}]*\}'
|
json_pattern = r'\{[^{}]*(?:"narrations"|"image_prompts"|"video_prompts"|"merged_paragraphs"|"groups"|"recommended_segments"|"scene_boundaries")\s*:\s*[^{}]*\}'
|
||||||
match = re.search(json_pattern, text, re.DOTALL)
|
match = re.search(json_pattern, text, re.DOTALL)
|
||||||
if match:
|
if match:
|
||||||
try:
|
try:
|
||||||
@@ -498,6 +671,17 @@ def _parse_json(text: str) -> dict:
|
|||||||
except json.JSONDecodeError:
|
except json.JSONDecodeError:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
# Try to find any JSON object that looks like it contains an array
|
||||||
|
# This is a more aggressive fallback for complex nested arrays
|
||||||
|
json_start = text.find('{')
|
||||||
|
json_end = text.rfind('}')
|
||||||
|
if json_start != -1 and json_end != -1 and json_end > json_start:
|
||||||
|
potential_json = text[json_start:json_end + 1]
|
||||||
|
try:
|
||||||
|
return json.loads(potential_json)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
pass
|
||||||
|
|
||||||
# If all fails, raise error
|
# If all fails, raise error
|
||||||
raise json.JSONDecodeError("No valid JSON found", text, 0)
|
raise json.JSONDecodeError("No valid JSON found", text, 0)
|
||||||
|
|
||||||
|
|||||||
@@ -65,6 +65,7 @@ def render_content_input():
|
|||||||
"paragraph": tr("split.mode_paragraph"),
|
"paragraph": tr("split.mode_paragraph"),
|
||||||
"line": tr("split.mode_line"),
|
"line": tr("split.mode_line"),
|
||||||
"sentence": tr("split.mode_sentence"),
|
"sentence": tr("split.mode_sentence"),
|
||||||
|
"smart": tr("split.mode_smart"),
|
||||||
}
|
}
|
||||||
split_mode = st.selectbox(
|
split_mode = st.selectbox(
|
||||||
tr("split.mode_label"),
|
tr("split.mode_label"),
|
||||||
@@ -73,8 +74,16 @@ def render_content_input():
|
|||||||
index=0, # Default to paragraph mode
|
index=0, # Default to paragraph mode
|
||||||
help=tr("split.mode_help")
|
help=tr("split.mode_help")
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Show info for smart mode (auto-detect segment count)
|
||||||
|
if split_mode == "smart":
|
||||||
|
st.info(tr("split.smart_auto_hint"))
|
||||||
|
target_segments = None # Auto-detect
|
||||||
|
else:
|
||||||
|
target_segments = None # Not used for other modes
|
||||||
else:
|
else:
|
||||||
split_mode = "paragraph" # Default for generate mode (not used)
|
split_mode = "paragraph" # Default for generate mode (not used)
|
||||||
|
target_segments = None
|
||||||
|
|
||||||
# Title input (optional for both modes)
|
# Title input (optional for both modes)
|
||||||
title = st.text_input(
|
title = st.text_input(
|
||||||
@@ -105,7 +114,8 @@ def render_content_input():
|
|||||||
"text": text,
|
"text": text,
|
||||||
"title": title,
|
"title": title,
|
||||||
"n_scenes": n_scenes,
|
"n_scenes": n_scenes,
|
||||||
"split_mode": split_mode
|
"split_mode": split_mode,
|
||||||
|
"target_segments": target_segments
|
||||||
}
|
}
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
|||||||
@@ -52,6 +52,7 @@ def render_single_output(pixelle_video, video_params):
|
|||||||
title = video_params.get("title")
|
title = video_params.get("title")
|
||||||
n_scenes = video_params.get("n_scenes", 5)
|
n_scenes = video_params.get("n_scenes", 5)
|
||||||
split_mode = video_params.get("split_mode", "paragraph")
|
split_mode = video_params.get("split_mode", "paragraph")
|
||||||
|
target_segments = video_params.get("target_segments", 8)
|
||||||
bgm_path = video_params.get("bgm_path")
|
bgm_path = video_params.get("bgm_path")
|
||||||
bgm_volume = video_params.get("bgm_volume", 0.2)
|
bgm_volume = video_params.get("bgm_volume", 0.2)
|
||||||
|
|
||||||
@@ -116,6 +117,7 @@ def render_single_output(pixelle_video, video_params):
|
|||||||
"title": title if title else None,
|
"title": title if title else None,
|
||||||
"n_scenes": n_scenes,
|
"n_scenes": n_scenes,
|
||||||
"split_mode": split_mode,
|
"split_mode": split_mode,
|
||||||
|
"target_segments": target_segments,
|
||||||
"media_workflow": workflow_key,
|
"media_workflow": workflow_key,
|
||||||
"frame_template": frame_template,
|
"frame_template": frame_template,
|
||||||
"prompt_prefix": prompt_prefix,
|
"prompt_prefix": prompt_prefix,
|
||||||
@@ -222,6 +224,7 @@ def render_single_output(pixelle_video, video_params):
|
|||||||
"title": title if title else None,
|
"title": title if title else None,
|
||||||
"n_scenes": n_scenes,
|
"n_scenes": n_scenes,
|
||||||
"split_mode": split_mode,
|
"split_mode": split_mode,
|
||||||
|
"target_segments": target_segments,
|
||||||
"media_workflow": workflow_key,
|
"media_workflow": workflow_key,
|
||||||
"frame_template": frame_template,
|
"frame_template": frame_template,
|
||||||
"prompt_prefix": prompt_prefix,
|
"prompt_prefix": prompt_prefix,
|
||||||
|
|||||||
@@ -26,6 +26,8 @@
|
|||||||
"split.mode_paragraph": "📄 By Paragraph (\\n\\n)",
|
"split.mode_paragraph": "📄 By Paragraph (\\n\\n)",
|
||||||
"split.mode_line": "📝 By Line (\\n)",
|
"split.mode_line": "📝 By Line (\\n)",
|
||||||
"split.mode_sentence": "✂️ By Sentence (。.!?)",
|
"split.mode_sentence": "✂️ By Sentence (。.!?)",
|
||||||
|
"split.mode_smart": "🧠 Smart Merge (AI Grouping)",
|
||||||
|
"split.smart_auto_hint": "🤖 AI will analyze text structure, recommend optimal segment count, and intelligently merge related paragraphs (dialogues, same scene)",
|
||||||
"input.content": "Content",
|
"input.content": "Content",
|
||||||
"input.content_placeholder": "Used directly without modification (split by strategy below)\nExample:\nHello everyone, today I'll share three study tips.\n\nThe first tip is focus training, meditate for 10 minutes daily.\n\nThe second tip is active recall, review immediately after learning.",
|
"input.content_placeholder": "Used directly without modification (split by strategy below)\nExample:\nHello everyone, today I'll share three study tips.\n\nThe first tip is focus training, meditate for 10 minutes daily.\n\nThe second tip is active recall, review immediately after learning.",
|
||||||
"input.content_help": "Provide your own content for video generation",
|
"input.content_help": "Provide your own content for video generation",
|
||||||
|
|||||||
@@ -26,6 +26,8 @@
|
|||||||
"split.mode_paragraph": "📄 按段落(\\n\\n)",
|
"split.mode_paragraph": "📄 按段落(\\n\\n)",
|
||||||
"split.mode_line": "📝 按行(\\n)",
|
"split.mode_line": "📝 按行(\\n)",
|
||||||
"split.mode_sentence": "✂️ 按句号(。.!?)",
|
"split.mode_sentence": "✂️ 按句号(。.!?)",
|
||||||
|
"split.mode_smart": "🧠 智能合并(AI 分组)",
|
||||||
|
"split.smart_auto_hint": "🤖 AI 将自动分析文本结构,推荐最佳分镜数量,并智能合并相关段落(对话、同一场景)",
|
||||||
"input.content": "内容",
|
"input.content": "内容",
|
||||||
"input.content_placeholder": "直接使用,不做改写(根据下方分割方式切分)\n例如:\n大家好,今天跟你分享三个学习技巧。\n\n第一个技巧是专注力训练,每天冥想10分钟。\n\n第二个技巧是主动回忆,学完立即复述。",
|
"input.content_placeholder": "直接使用,不做改写(根据下方分割方式切分)\n例如:\n大家好,今天跟你分享三个学习技巧。\n\n第一个技巧是专注力训练,每天冥想10分钟。\n\n第二个技巧是主动回忆,学完立即复述。",
|
||||||
"input.content_help": "提供您自己的内容用于视频生成",
|
"input.content_help": "提供您自己的内容用于视频生成",
|
||||||
|
|||||||
Reference in New Issue
Block a user