feat: Add hybrid quality evaluation system with CLIP and VLM support
- Add FeatureExtractor for CLIP-based image/text feature extraction - Add ObjectiveMetricsCalculator for technical quality metrics - Add VLMEvaluator for vision language model evaluation - Add HybridQualityGate combining objective + VLM evaluation - Enhance CharacterMemory with visual feature support - Add quality optional dependency (torch, ftfy, regex) - Add unit tests for new modules 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
64
tests/test_objective_metrics.py
Normal file
64
tests/test_objective_metrics.py
Normal file
@@ -0,0 +1,64 @@
|
||||
# Copyright (C) 2025 AIDC-AI
|
||||
# Tests for ObjectiveMetricsCalculator
|
||||
|
||||
import pytest
|
||||
from pathlib import Path
|
||||
|
||||
from pixelle_video.services.quality.objective_metrics import (
|
||||
ObjectiveMetricsCalculator,
|
||||
TechnicalMetrics,
|
||||
)
|
||||
|
||||
|
||||
class TestTechnicalMetrics:
|
||||
"""Tests for TechnicalMetrics dataclass"""
|
||||
|
||||
def test_default_values(self):
|
||||
metrics = TechnicalMetrics()
|
||||
assert metrics.sharpness_score == 0.0
|
||||
assert metrics.overall_technical == 0.0
|
||||
assert metrics.issues == []
|
||||
|
||||
def test_to_dict(self):
|
||||
metrics = TechnicalMetrics(
|
||||
sharpness_score=0.8,
|
||||
brightness_score=0.5,
|
||||
issues=["test issue"]
|
||||
)
|
||||
d = metrics.to_dict()
|
||||
assert d["sharpness_score"] == 0.8
|
||||
assert "test issue" in d["issues"]
|
||||
|
||||
|
||||
class TestObjectiveMetricsCalculator:
|
||||
"""Tests for ObjectiveMetricsCalculator"""
|
||||
|
||||
def test_init_default(self):
|
||||
calc = ObjectiveMetricsCalculator()
|
||||
assert calc.sharpness_threshold == 0.3
|
||||
|
||||
def test_init_custom(self):
|
||||
calc = ObjectiveMetricsCalculator(sharpness_threshold=0.5)
|
||||
assert calc.sharpness_threshold == 0.5
|
||||
|
||||
def test_analyze_nonexistent_image(self):
|
||||
calc = ObjectiveMetricsCalculator()
|
||||
metrics = calc.analyze_image("/nonexistent/path.png")
|
||||
assert len(metrics.issues) > 0
|
||||
assert "failed" in metrics.issues[0].lower()
|
||||
|
||||
def test_analyze_real_image(self, tmp_path):
|
||||
"""Test with a real image file"""
|
||||
from PIL import Image
|
||||
|
||||
# Create test image
|
||||
img = Image.new("RGB", (256, 256), color=(128, 128, 128))
|
||||
img_path = tmp_path / "test.png"
|
||||
img.save(img_path)
|
||||
|
||||
calc = ObjectiveMetricsCalculator()
|
||||
metrics = calc.analyze_image(str(img_path))
|
||||
|
||||
assert 0.0 <= metrics.sharpness_score <= 1.0
|
||||
assert 0.0 <= metrics.brightness_score <= 1.0
|
||||
assert 0.0 <= metrics.overall_technical <= 1.0
|
||||
Reference in New Issue
Block a user