diff --git a/pixelle_video/pipelines/asset_based.py b/pixelle_video/pipelines/asset_based.py
index 082ddb8..88c511b 100644
--- a/pixelle_video/pipelines/asset_based.py
+++ b/pixelle_video/pipelines/asset_based.py
@@ -27,23 +27,27 @@ Example:
result = await pipeline(
assets=["/path/img1.jpg", "/path/img2.jpg"],
video_title="Pet Store Year-End Sale",
- style="warm and friendly",
+ intent="Promote our pet store's year-end sale with a warm and friendly tone",
duration=30
)
"""
-from typing import List, Dict, Any, Optional
+from typing import List, Dict, Any, Optional, Callable
from pathlib import Path
from loguru import logger
from pydantic import BaseModel, Field
from pixelle_video.pipelines.linear import LinearVideoPipeline, PipelineContext
+from pixelle_video.models.progress import ProgressEvent
from pixelle_video.utils.os_util import (
create_task_output_dir,
get_task_final_video_path
)
+# Type alias for progress callback
+ProgressCallback = Optional[Callable[[ProgressEvent], None]]
+
# ==================== Structured Output Models ====================
@@ -82,12 +86,12 @@ class AssetBasedPipeline(LinearVideoPipeline):
assets: List[str],
video_title: str = "",
intent: Optional[str] = None,
- style: str = "professional and engaging",
duration: int = 30,
source: str = "runninghub",
bgm_path: Optional[str] = None,
bgm_volume: float = 0.2,
bgm_mode: str = "loop",
+ progress_callback: ProgressCallback = None,
**kwargs
) -> PipelineContext:
"""
@@ -97,12 +101,12 @@ class AssetBasedPipeline(LinearVideoPipeline):
assets: List of asset file paths
video_title: Video title
intent: Video intent/purpose (defaults to video_title)
- style: Video style
duration: Target duration in seconds
source: Workflow source ("runninghub" or "selfhost")
bgm_path: Path to background music file (optional)
bgm_volume: BGM volume (0.0-1.0, default 0.2)
bgm_mode: BGM mode ("loop" or "once", default "loop")
+ progress_callback: Optional callback for progress updates
**kwargs: Additional parameters
Returns:
@@ -110,6 +114,9 @@ class AssetBasedPipeline(LinearVideoPipeline):
"""
from pixelle_video.pipelines.linear import PipelineContext
+ # Store progress callback
+ self._progress_callback = progress_callback
+
# Create custom context with asset-specific parameters
ctx = PipelineContext(
input_text=intent or video_title, # Use intent or title as input_text
@@ -117,7 +124,6 @@ class AssetBasedPipeline(LinearVideoPipeline):
"assets": assets,
"video_title": video_title,
"intent": intent or video_title,
- "style": style,
"duration": duration,
"source": source,
"bgm_path": bgm_path,
@@ -147,6 +153,11 @@ class AssetBasedPipeline(LinearVideoPipeline):
await self.handle_exception(ctx, e)
raise
+ def _emit_progress(self, event: ProgressEvent):
+ """Emit progress event to callback if available"""
+ if self._progress_callback:
+ self._progress_callback(event)
+
async def setup_environment(self, context: PipelineContext) -> PipelineContext:
"""
Analyze uploaded assets and build asset index
@@ -172,7 +183,17 @@ class AssetBasedPipeline(LinearVideoPipeline):
if not assets:
raise ValueError("No assets provided. Please upload at least one image or video.")
- logger.info(f"Found {len(assets)} assets to analyze")
+ total_assets = len(assets)
+ logger.info(f"Found {total_assets} assets to analyze")
+
+ # Emit initial progress (0-15% for asset analysis)
+ self._emit_progress(ProgressEvent(
+ event_type="analyzing_assets",
+ progress=0.01,
+ frame_current=0,
+ frame_total=total_assets,
+ extra_info="start"
+ ))
self.asset_index = {}
@@ -183,7 +204,17 @@ class AssetBasedPipeline(LinearVideoPipeline):
logger.warning(f"Asset not found: {asset_path}")
continue
- logger.info(f"Analyzing asset {i}/{len(assets)}: {asset_path_obj.name}")
+ logger.info(f"Analyzing asset {i}/{total_assets}: {asset_path_obj.name}")
+
+ # Emit progress for this asset
+ progress = 0.01 + (i - 1) / total_assets * 0.14 # 1% - 15%
+ self._emit_progress(ProgressEvent(
+ event_type="analyzing_asset",
+ progress=progress,
+ frame_current=i,
+ frame_total=total_assets,
+ extra_info=asset_path_obj.name
+ ))
# Determine asset type
asset_type = self._get_asset_type(asset_path_obj)
@@ -222,34 +253,35 @@ class AssetBasedPipeline(LinearVideoPipeline):
# Store asset index in context
context.asset_index = self.asset_index
+ # Emit completion of asset analysis
+ self._emit_progress(ProgressEvent(
+ event_type="analyzing_assets",
+ progress=0.15,
+ frame_current=total_assets,
+ frame_total=total_assets,
+ extra_info="complete"
+ ))
+
return context
async def determine_title(self, context: PipelineContext) -> PipelineContext:
"""
- Use user-provided title or generate one via LLM
+ Use user-provided title if available, otherwise leave empty
Args:
context: Pipeline context
Returns:
- Updated context with title
+ Updated context with title (may be empty)
"""
- from pixelle_video.utils.content_generators import generate_title
-
title = context.request.get("video_title")
if title:
context.title = title
logger.info(f"📝 Video title: {title} (user-specified)")
else:
- # Generate title from intent using LLM
- intent = context.request.get("intent", context.input_text)
- context.title = await generate_title(
- self.core.llm,
- content=intent,
- strategy="llm"
- )
- logger.info(f"📝 Video title: {context.title} (LLM-generated)")
+ context.title = ""
+ logger.info(f"📝 No video title specified (will be hidden in template)")
return context
@@ -267,10 +299,16 @@ class AssetBasedPipeline(LinearVideoPipeline):
"""
logger.info("🤖 Generating video script with LLM...")
+ # Emit progress for script generation (15% - 25%)
+ self._emit_progress(ProgressEvent(
+ event_type="generating_script",
+ progress=0.16
+ ))
+
# Build prompt for LLM
- intent = context.request.get("intent", context.title)
- style = context.request.get("style", "professional and engaging")
+ intent = context.request.get("intent", context.input_text)
duration = context.request.get("duration", 30)
+ title = context.title # May be empty if user didn't provide one
# Prepare asset descriptions with full paths for LLM to reference
asset_info = []
@@ -279,11 +317,13 @@ class AssetBasedPipeline(LinearVideoPipeline):
assets_text = "\n".join(asset_info)
+ # Build title section for prompt (only if title is provided)
+ title_section = f"- Video Title: {title}\n" if title else ""
+
prompt = f"""You are a video script writer. Generate a {duration}-second video script.
## Requirements
-- Intent: {intent}
-- Style: {style}
+{title_section}- Intent: {intent}
- Target Duration: {duration} seconds
## Available Assets (use the exact path in your response)
@@ -295,6 +335,7 @@ class AssetBasedPipeline(LinearVideoPipeline):
3. Each scene can have 1-5 narration sentences
4. Try to use all available assets, but it's OK to reuse if needed
5. Total duration of all scenes should be approximately {duration} seconds
+{f"6. The narrations should align with the video title: {title}" if title else ""}
## Output Requirements
For each scene, provide:
@@ -337,6 +378,13 @@ Generate the video script now:"""
logger.success(f"✅ Generated script with {len(context.script)} scenes")
+ # Emit progress after script generation
+ self._emit_progress(ProgressEvent(
+ event_type="generating_script",
+ progress=0.25,
+ extra_info="complete"
+ ))
+
# Log script preview
for scene in context.script:
narrations = scene.get("narrations", [])
@@ -413,7 +461,7 @@ Generate the video script now:"""
context.narrations = all_narrations
# Get template dimensions
- template_name = context.params.get("frame_template", "1080x1920/image_default.html")
+ template_name = "1080x1920/image_pure.html"
# Extract dimensions from template name (e.g., "1080x1920")
try:
dims = template_name.split("/")[0].split("x")
@@ -492,9 +540,25 @@ Generate the video script now:"""
storyboard = context.storyboard
config = context.config
+ total_frames = len(storyboard.frames)
+
+ # Progress range: 30% - 85% for frame production
+ base_progress = 0.30
+ progress_range = 0.55 # 85% - 30%
for i, frame in enumerate(storyboard.frames, 1):
- logger.info(f"Producing scene {i}/{len(storyboard.frames)}...")
+ logger.info(f"Producing scene {i}/{total_frames}...")
+
+ # Emit progress for this frame (each frame has 4 steps: audio, combine, duration, compose)
+ frame_progress = base_progress + (i - 1) / total_frames * progress_range
+ self._emit_progress(ProgressEvent(
+ event_type="frame_step",
+ progress=frame_progress,
+ frame_current=i,
+ frame_total=total_frames,
+ step=1,
+ action="audio"
+ ))
# Get scene data with narrations
scene = frame._scene_data
@@ -524,6 +588,17 @@ Generate the video script now:"""
if len(narration_audios) > 1:
from pixelle_video.utils.os_util import get_task_frame_path
+ # Emit progress for combining audio
+ frame_progress = base_progress + ((i - 1) + 0.25) / total_frames * progress_range
+ self._emit_progress(ProgressEvent(
+ event_type="frame_step",
+ progress=frame_progress,
+ frame_current=i,
+ frame_total=total_frames,
+ step=2,
+ action="audio"
+ ))
+
combined_audio_path = Path(context.task_dir) / "frames" / f"{i:02d}_audio.mp3"
# Use FFmpeg to concatenate audio files
@@ -564,6 +639,17 @@ Generate the video script now:"""
# Since we already have the audio and image, we bypass some steps
# by manually calling the composition steps
+ # Emit progress for duration calculation
+ frame_progress = base_progress + ((i - 1) + 0.5) / total_frames * progress_range
+ self._emit_progress(ProgressEvent(
+ event_type="frame_step",
+ progress=frame_progress,
+ frame_current=i,
+ frame_total=total_frames,
+ step=3,
+ action="compose"
+ ))
+
# Get audio duration for frame duration
import subprocess
duration_cmd = [
@@ -576,16 +662,35 @@ Generate the video script now:"""
duration_result = subprocess.run(duration_cmd, capture_output=True, text=True, check=True)
frame.duration = float(duration_result.stdout.strip())
+ # Emit progress for video composition
+ frame_progress = base_progress + ((i - 1) + 0.75) / total_frames * progress_range
+ self._emit_progress(ProgressEvent(
+ event_type="frame_step",
+ progress=frame_progress,
+ frame_current=i,
+ frame_total=total_frames,
+ step=4,
+ action="video"
+ ))
+
# Use FrameProcessor for proper composition
processed_frame = await self.core.frame_processor(
frame=frame,
storyboard=storyboard,
config=config,
- total_frames=len(storyboard.frames)
+ total_frames=total_frames
)
logger.success(f"✅ Scene {i} complete")
+ # Emit completion of frame production
+ self._emit_progress(ProgressEvent(
+ event_type="processing_frame",
+ progress=0.85,
+ frame_current=total_frames,
+ frame_total=total_frames
+ ))
+
return context
async def post_production(self, context: PipelineContext) -> PipelineContext:
@@ -600,6 +705,12 @@ Generate the video script now:"""
"""
logger.info("🎞️ Concatenating scenes...")
+ # Emit progress for concatenation (85% - 95%)
+ self._emit_progress(ProgressEvent(
+ event_type="concatenating",
+ progress=0.86
+ ))
+
# Collect video segments from storyboard frames
scene_videos = [frame.video_segment_path for frame in context.storyboard.frames]
@@ -626,6 +737,13 @@ Generate the video script now:"""
logger.success(f"✅ Final video: {final_video_path}")
+ # Emit completion of concatenation
+ self._emit_progress(ProgressEvent(
+ event_type="concatenating",
+ progress=0.95,
+ extra_info="complete"
+ ))
+
return context
async def finalize(self, context: PipelineContext) -> PipelineContext:
@@ -641,8 +759,84 @@ Generate the video script now:"""
logger.success(f"🎉 Asset-based video generation complete!")
logger.info(f"Video: {context.final_video_path}")
+ # Emit completion
+ self._emit_progress(ProgressEvent(
+ event_type="completed",
+ progress=1.0
+ ))
+
+ # Persist metadata for history tracking
+ await self._persist_task_data(context)
+
return context
+ async def _persist_task_data(self, ctx: PipelineContext):
+ """
+ Persist task metadata and storyboard to filesystem for history tracking
+ """
+ from pathlib import Path
+
+ try:
+ storyboard = ctx.storyboard
+ task_id = ctx.task_id
+
+ if not task_id:
+ logger.warning("No task_id in context, skipping persistence")
+ return
+
+ # Get file size
+ video_path_obj = Path(ctx.final_video_path)
+ file_size = video_path_obj.stat().st_size if video_path_obj.exists() else 0
+
+ # Build metadata
+ input_params = {
+ "text": ctx.input_text,
+ "mode": "asset_based",
+ "title": ctx.title or "",
+ "n_scenes": len(storyboard.frames) if storyboard else 0,
+ "assets": ctx.request.get("assets", []),
+ "intent": ctx.request.get("intent"),
+ "duration": ctx.request.get("duration"),
+ "source": ctx.request.get("source"),
+ "voice_id": ctx.request.get("voice_id"),
+ "tts_speed": ctx.request.get("tts_speed"),
+ }
+
+ metadata = {
+ "task_id": task_id,
+ "created_at": storyboard.created_at.isoformat() if storyboard and storyboard.created_at else None,
+ "completed_at": storyboard.completed_at.isoformat() if storyboard and storyboard.completed_at else None,
+ "status": "completed",
+
+ "input": input_params,
+
+ "result": {
+ "video_path": ctx.final_video_path,
+ "duration": storyboard.total_duration if storyboard else 0,
+ "file_size": file_size,
+ "n_frames": len(storyboard.frames) if storyboard else 0
+ },
+
+ "config": {
+ "llm_model": self.core.config.get("llm", {}).get("model", "unknown"),
+ "llm_base_url": self.core.config.get("llm", {}).get("base_url", "unknown"),
+ "source": ctx.request.get("source", "runninghub"),
+ }
+ }
+
+ # Save metadata
+ await self.core.persistence.save_task_metadata(task_id, metadata)
+ logger.info(f"💾 Saved task metadata: {task_id}")
+
+ # Save storyboard
+ if storyboard:
+ await self.core.persistence.save_storyboard(task_id, storyboard)
+ logger.info(f"💾 Saved storyboard: {task_id}")
+
+ except Exception as e:
+ logger.error(f"Failed to persist task data: {e}")
+ # Don't raise - persistence failure shouldn't break video generation
+
# Helper methods
def _get_asset_type(self, path: Path) -> str:
diff --git a/templates/1080x1920/image_pure.html b/templates/1080x1920/image_pure.html
new file mode 100644
index 0000000..880d42f
--- /dev/null
+++ b/templates/1080x1920/image_pure.html
@@ -0,0 +1,145 @@
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+ {{title}}
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/web/components/content_input.py b/web/components/content_input.py
index 02363b0..a283c90 100644
--- a/web/components/content_input.py
+++ b/web/components/content_input.py
@@ -169,7 +169,7 @@ def render_content_input():
}
-def render_bgm_section():
+def render_bgm_section(key_prefix=""):
"""Render BGM selection section"""
with st.container(border=True):
st.markdown(f"**{tr('section.bgm')}**")
@@ -204,7 +204,8 @@ def render_bgm_section():
"BGM",
bgm_options,
index=default_index,
- label_visibility="collapsed"
+ label_visibility="collapsed",
+ key=f"{key_prefix}bgm_selector"
)
# BGM volume slider (only show when BGM is selected)
@@ -216,7 +217,7 @@ def render_bgm_section():
value=0.2,
step=0.01,
format="%.2f",
- key="bgm_volume_slider",
+ key=f"{key_prefix}bgm_volume_slider",
help=tr("bgm.volume_help")
)
else:
@@ -224,7 +225,7 @@ def render_bgm_section():
# BGM preview button (only if BGM is not "None")
if bgm_choice != tr("bgm.none"):
- if st.button(tr("bgm.preview"), key="preview_bgm", use_container_width=True):
+ if st.button(tr("bgm.preview"), key=f"{key_prefix}preview_bgm", use_container_width=True):
from pixelle_video.utils.os_util import get_resource_path, resource_exists
try:
if resource_exists("bgm", bgm_choice):
diff --git a/web/i18n/locales/en_US.json b/web/i18n/locales/en_US.json
index 7925a7f..28156a6 100644
--- a/web/i18n/locales/en_US.json
+++ b/web/i18n/locales/en_US.json
@@ -332,7 +332,44 @@
"batch.error": "Error",
"batch.error_detail": "View detailed error stack",
"pipeline.standard.name": "Standard Video",
- "pipeline.demo.name": "Demo Feature",
- "pipeline.demo.description": "A demo pipeline with a custom layout"
+ "pipeline.asset_based.name": "Asset-Based Video",
+ "pipeline.asset_based.description": "Generate videos from user-provided assets",
+ "asset_based.section.assets": "📦 Asset Upload",
+ "asset_based.section.video_info": "📝 Video Information",
+ "asset_based.section.source": "⚙️ Service Configuration",
+ "asset_based.assets.what": "Upload your images or video assets, AI will automatically analyze them and generate a video script",
+ "asset_based.assets.how": "Supports JPG/PNG/GIF/WebP images and MP4/MOV/AVI videos. Each asset should be clear and relevant",
+ "asset_based.assets.upload": "Upload Assets",
+ "asset_based.assets.upload_help": "Supports multiple image or video files",
+ "asset_based.assets.count": "✅ Uploaded {count} assets",
+ "asset_based.assets.preview": "📷 Asset Preview",
+ "asset_based.assets.empty_hint": "💡 Please upload at least one image or video asset",
+ "asset_based.video_title": "Video Title (Optional)",
+ "asset_based.video_title_placeholder": "e.g., Pet Store Year-End Sale",
+ "asset_based.video_title_help": "Main title for the video, leave empty to hide title",
+ "asset_based.intent": "Video Intent",
+ "asset_based.intent_placeholder": "e.g., Promote our pet store's year-end special offers to attract more customers, use a warm and friendly tone",
+ "asset_based.intent_help": "Describe the purpose, message, and desired style of this video",
+ "asset_based.duration": "Target Duration (seconds)",
+ "asset_based.duration_help": "Expected video duration, AI will adjust based on asset count",
+ "asset_based.duration_label": "Target Duration: {seconds}s",
+ "asset_based.source.what": "Select the service provider for image analysis",
+ "asset_based.source.how": "RunningHub is a cloud service requiring API Key; SelfHost uses local ComfyUI",
+ "asset_based.source.select": "Select Service",
+ "asset_based.source.runninghub": "☁️ RunningHub (Cloud)",
+ "asset_based.source.selfhost": "🖥️ SelfHost (Local)",
+ "asset_based.source.runninghub_hint": "💡 Using RunningHub cloud service for asset analysis",
+ "asset_based.source.selfhost_hint": "💡 Using local ComfyUI service for asset analysis",
+ "asset_based.source.runninghub_not_configured": "⚠️ RunningHub API Key not configured",
+ "asset_based.source.selfhost_not_configured": "⚠️ Local ComfyUI URL not configured",
+ "asset_based.output.no_assets": "💡 Please upload assets on the left first",
+ "asset_based.output.ready": "📦 {count} assets ready, you can start generating",
+ "asset_based.progress.analyzing": "🔍 Analyzing assets...",
+ "asset_based.progress.analyzing_start": "🔍 Starting to analyze {total} assets...",
+ "asset_based.progress.analyzing_asset": "🔍 Analyzing asset {current}/{total}: {name}",
+ "asset_based.progress.analyzing_complete": "✅ Asset analysis complete ({count} total)",
+ "asset_based.progress.generating_script": "📝 Generating video script...",
+ "asset_based.progress.script_complete": "✅ Script generation complete",
+ "asset_based.progress.concat_complete": "✅ Video concatenation complete"
}
}
\ No newline at end of file
diff --git a/web/i18n/locales/zh_CN.json b/web/i18n/locales/zh_CN.json
index 836562c..21d1ae0 100644
--- a/web/i18n/locales/zh_CN.json
+++ b/web/i18n/locales/zh_CN.json
@@ -332,7 +332,44 @@
"batch.error": "错误信息",
"batch.error_detail": "查看详细错误堆栈",
"pipeline.standard.name": "标准视频",
- "pipeline.demo.name": "演示功能",
- "pipeline.demo.description": "具有自定义布局的演示 Pipeline"
+ "pipeline.asset_based.name": "素材视频",
+ "pipeline.asset_based.description": "基于用户上传的素材生成视频",
+ "asset_based.section.assets": "📦 素材上传",
+ "asset_based.section.video_info": "📝 视频信息",
+ "asset_based.section.source": "⚙️ 服务配置",
+ "asset_based.assets.what": "上传您的图片或视频素材,AI 将自动分析并生成视频脚本",
+ "asset_based.assets.how": "支持 JPG/PNG/GIF/WebP 图片和 MP4/MOV/AVI 等视频格式,建议每个素材清晰且内容相关",
+ "asset_based.assets.upload": "上传素材",
+ "asset_based.assets.upload_help": "支持多个图片或视频文件",
+ "asset_based.assets.count": "✅ 已上传 {count} 个素材",
+ "asset_based.assets.preview": "📷 素材预览",
+ "asset_based.assets.empty_hint": "💡 请上传至少一个图片或视频素材",
+ "asset_based.video_title": "视频标题(选填)",
+ "asset_based.video_title_placeholder": "例如:宠物店年终大促",
+ "asset_based.video_title_help": "视频的主标题,留空则不显示标题",
+ "asset_based.intent": "视频意图",
+ "asset_based.intent_placeholder": "例如:宣传我们的宠物店年终特惠活动,吸引更多客户到店消费,风格要温馨亲切",
+ "asset_based.intent_help": "描述这个视频的目的、想传达的信息以及期望的风格",
+ "asset_based.duration": "目标时长(秒)",
+ "asset_based.duration_help": "视频的预期时长,AI 会根据素材数量和时长进行调整",
+ "asset_based.duration_label": "目标时长:{seconds} 秒",
+ "asset_based.source.what": "选择用于图像分析的服务提供商",
+ "asset_based.source.how": "RunningHub 是云端服务,需配置 API Key;SelfHost 是本地 ComfyUI 服务",
+ "asset_based.source.select": "选择服务",
+ "asset_based.source.runninghub": "☁️ RunningHub(云端)",
+ "asset_based.source.selfhost": "🖥️ SelfHost(本地)",
+ "asset_based.source.runninghub_hint": "💡 使用 RunningHub 云端服务分析素材",
+ "asset_based.source.selfhost_hint": "💡 使用本地 ComfyUI 服务分析素材",
+ "asset_based.source.runninghub_not_configured": "⚠️ 未配置 RunningHub API Key",
+ "asset_based.source.selfhost_not_configured": "⚠️ 未配置本地 ComfyUI 地址",
+ "asset_based.output.no_assets": "💡 请先在左侧上传素材",
+ "asset_based.output.ready": "📦 已准备好 {count} 个素材,可以开始生成",
+ "asset_based.progress.analyzing": "🔍 正在分析素材...",
+ "asset_based.progress.analyzing_start": "🔍 开始分析 {total} 个素材...",
+ "asset_based.progress.analyzing_asset": "🔍 分析素材 {current}/{total}:{name}",
+ "asset_based.progress.analyzing_complete": "✅ 素材分析完成(共 {count} 个)",
+ "asset_based.progress.generating_script": "📝 正在生成视频脚本...",
+ "asset_based.progress.script_complete": "✅ 脚本生成完成",
+ "asset_based.progress.concat_complete": "✅ 视频合成完成"
}
}
\ No newline at end of file
diff --git a/web/pipelines/__init__.py b/web/pipelines/__init__.py
index 03b722d..1c5efa7 100644
--- a/web/pipelines/__init__.py
+++ b/web/pipelines/__init__.py
@@ -25,7 +25,7 @@ from web.pipelines.base import (
# Import all pipeline UI modules to ensure they register themselves
from web.pipelines import standard
-from web.pipelines import demo
+from web.pipelines import asset_based
__all__ = [
"PipelineUI",
diff --git a/web/pipelines/asset_based.py b/web/pipelines/asset_based.py
new file mode 100644
index 0000000..cf19c25
--- /dev/null
+++ b/web/pipelines/asset_based.py
@@ -0,0 +1,447 @@
+# Copyright (C) 2025 AIDC-AI
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+# http://www.apache.org/licenses/LICENSE-2.0
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Asset-Based Pipeline UI
+
+Implements the UI for generating videos from user-provided assets.
+"""
+
+import os
+import time
+from pathlib import Path
+from typing import Any
+
+import streamlit as st
+from loguru import logger
+
+from web.i18n import tr, get_language
+from web.pipelines.base import PipelineUI, register_pipeline_ui
+from web.components.content_input import render_bgm_section, render_version_info
+from web.utils.async_helpers import run_async
+from pixelle_video.config import config_manager
+from pixelle_video.models.progress import ProgressEvent
+
+
+class AssetBasedPipelineUI(PipelineUI):
+ """
+ UI for the Asset-Based Video Generation Pipeline.
+ Generates videos from user-provided assets (images/videos).
+ """
+ name = "asset_based"
+ icon = "📦"
+
+ @property
+ def display_name(self):
+ return tr("pipeline.asset_based.name")
+
+ @property
+ def description(self):
+ return tr("pipeline.asset_based.description")
+
+ def render(self, pixelle_video: Any):
+ # Three-column layout
+ left_col, middle_col, right_col = st.columns([1, 1, 1])
+
+ # ====================================================================
+ # Left Column: Asset Upload & Video Info
+ # ====================================================================
+ with left_col:
+ asset_params = self._render_asset_input()
+ bgm_params = render_bgm_section(key_prefix="asset_")
+ render_version_info()
+
+ # ====================================================================
+ # Middle Column: Video Configuration
+ # ====================================================================
+ with middle_col:
+ config_params = self._render_video_config(pixelle_video)
+
+ # ====================================================================
+ # Right Column: Output Preview
+ # ====================================================================
+ with right_col:
+ # Combine all parameters
+ video_params = {
+ "pipeline": self.name,
+ **asset_params,
+ **bgm_params,
+ **config_params
+ }
+
+ self._render_output_preview(pixelle_video, video_params)
+
+ def _render_asset_input(self) -> dict:
+ """Render asset upload section"""
+ with st.container(border=True):
+ st.markdown(f"**{tr('asset_based.section.assets')}**")
+
+ with st.expander(tr("help.feature_description"), expanded=False):
+ st.markdown(f"**{tr('help.what')}**")
+ st.markdown(tr("asset_based.assets.what"))
+ st.markdown(f"**{tr('help.how')}**")
+ st.markdown(tr("asset_based.assets.how"))
+
+ # File uploader for multiple files
+ uploaded_files = st.file_uploader(
+ tr("asset_based.assets.upload"),
+ type=["jpg", "jpeg", "png", "gif", "webp", "mp4", "mov", "avi", "mkv", "webm"],
+ accept_multiple_files=True,
+ help=tr("asset_based.assets.upload_help"),
+ key="asset_files"
+ )
+
+ # Save uploaded files to temp directory with unique session ID
+ asset_paths = []
+ if uploaded_files:
+ import uuid
+ session_id = str(uuid.uuid4()).replace('-', '')[:12]
+ temp_dir = Path(f"temp/assets_{session_id}")
+ temp_dir.mkdir(parents=True, exist_ok=True)
+
+ for uploaded_file in uploaded_files:
+ file_path = temp_dir / uploaded_file.name
+ with open(file_path, "wb") as f:
+ f.write(uploaded_file.getbuffer())
+ asset_paths.append(str(file_path.absolute()))
+
+ st.success(tr("asset_based.assets.count", count=len(asset_paths)))
+
+ # Preview uploaded assets
+ with st.expander(tr("asset_based.assets.preview"), expanded=True):
+ # Show in a grid (3 columns)
+ cols = st.columns(3)
+ for i, (file, path) in enumerate(zip(uploaded_files, asset_paths)):
+ with cols[i % 3]:
+ # Check if image or video
+ ext = Path(path).suffix.lower()
+ if ext in [".jpg", ".jpeg", ".png", ".gif", ".webp"]:
+ st.image(file, caption=file.name, use_container_width=True)
+ elif ext in [".mp4", ".mov", ".avi", ".mkv", ".webm"]:
+ st.video(file)
+ st.caption(file.name)
+ else:
+ st.info(tr("asset_based.assets.empty_hint"))
+
+ # Video title & intent
+ with st.container(border=True):
+ st.markdown(f"**{tr('asset_based.section.video_info')}**")
+
+ video_title = st.text_input(
+ tr("asset_based.video_title"),
+ placeholder=tr("asset_based.video_title_placeholder"),
+ help=tr("asset_based.video_title_help"),
+ key="asset_video_title"
+ )
+
+ intent = st.text_area(
+ tr("asset_based.intent"),
+ placeholder=tr("asset_based.intent_placeholder"),
+ help=tr("asset_based.intent_help"),
+ height=100,
+ key="asset_intent"
+ )
+
+ return {
+ "assets": asset_paths,
+ "video_title": video_title,
+ "intent": intent if intent else None
+ }
+
+ def _render_video_config(self, pixelle_video: Any) -> dict:
+ """Render video configuration section"""
+ # Duration configuration
+ with st.container(border=True):
+ st.markdown(f"**{tr('video.title')}**")
+
+ # Duration slider
+ duration = st.slider(
+ tr("asset_based.duration"),
+ min_value=15,
+ max_value=120,
+ value=30,
+ step=5,
+ help=tr("asset_based.duration_help"),
+ key="asset_duration"
+ )
+ st.caption(tr("asset_based.duration_label", seconds=duration))
+
+ # Workflow source selection
+ with st.container(border=True):
+ st.markdown(f"**{tr('asset_based.section.source')}**")
+
+ with st.expander(tr("help.feature_description"), expanded=False):
+ st.markdown(f"**{tr('help.what')}**")
+ st.markdown(tr("asset_based.source.what"))
+ st.markdown(f"**{tr('help.how')}**")
+ st.markdown(tr("asset_based.source.how"))
+
+ source_options = {
+ "runninghub": tr("asset_based.source.runninghub"),
+ "selfhost": tr("asset_based.source.selfhost")
+ }
+
+ # Check if RunningHub API key is configured
+ comfyui_config = config_manager.get_comfyui_config()
+ has_runninghub = bool(comfyui_config.get("runninghub_api_key"))
+ has_selfhost = bool(comfyui_config.get("comfyui_url"))
+
+ # Default to available source
+ if has_runninghub:
+ default_source_index = 0
+ elif has_selfhost:
+ default_source_index = 1
+ else:
+ default_source_index = 0
+
+ source = st.radio(
+ tr("asset_based.source.select"),
+ options=list(source_options.keys()),
+ format_func=lambda x: source_options[x],
+ index=default_source_index,
+ horizontal=True,
+ key="asset_source",
+ label_visibility="collapsed"
+ )
+
+ # Show hint based on selection
+ if source == "runninghub":
+ if not has_runninghub:
+ st.warning(tr("asset_based.source.runninghub_not_configured"))
+ else:
+ st.info(tr("asset_based.source.runninghub_hint"))
+ else:
+ if not has_selfhost:
+ st.warning(tr("asset_based.source.selfhost_not_configured"))
+ else:
+ st.info(tr("asset_based.source.selfhost_hint"))
+
+ # TTS configuration
+ with st.container(border=True):
+ st.markdown(f"**{tr('section.tts')}**")
+
+ # Import voice configuration
+ from pixelle_video.tts_voices import EDGE_TTS_VOICES, get_voice_display_name
+
+ # Get saved voice from config
+ comfyui_config = config_manager.get_comfyui_config()
+ tts_config = comfyui_config.get("tts", {})
+ local_config = tts_config.get("local", {})
+ saved_voice = local_config.get("voice", "zh-CN-YunjianNeural")
+ saved_speed = local_config.get("speed", 1.2)
+
+ # Build voice options with i18n
+ voice_options = []
+ voice_ids = []
+ default_voice_index = 0
+
+ for idx, voice_config in enumerate(EDGE_TTS_VOICES):
+ voice_id = voice_config["id"]
+ display_name = get_voice_display_name(voice_id, tr, get_language())
+ voice_options.append(display_name)
+ voice_ids.append(voice_id)
+
+ if voice_id == saved_voice:
+ default_voice_index = idx
+
+ # Two-column layout
+ voice_col, speed_col = st.columns([1, 1])
+
+ with voice_col:
+ selected_voice_display = st.selectbox(
+ tr("tts.voice_selector"),
+ voice_options,
+ index=default_voice_index,
+ key="asset_tts_voice"
+ )
+ selected_voice_index = voice_options.index(selected_voice_display)
+ voice_id = voice_ids[selected_voice_index]
+
+ with speed_col:
+ tts_speed = st.slider(
+ tr("tts.speed"),
+ min_value=0.5,
+ max_value=2.0,
+ value=saved_speed,
+ step=0.1,
+ format="%.1fx",
+ key="asset_tts_speed"
+ )
+ st.caption(tr("tts.speed_label", speed=f"{tts_speed:.1f}"))
+
+ return {
+ "duration": duration,
+ "source": source,
+ "voice_id": voice_id,
+ "tts_speed": tts_speed
+ }
+
+ def _render_output_preview(self, pixelle_video: Any, video_params: dict):
+ """Render output preview section"""
+ with st.container(border=True):
+ st.markdown(f"**{tr('section.video_generation')}**")
+
+ # Check configuration
+ if not config_manager.validate():
+ st.warning(tr("settings.not_configured"))
+
+ # Check if assets are provided
+ assets = video_params.get("assets", [])
+ if not assets:
+ st.info(tr("asset_based.output.no_assets"))
+ st.button(
+ tr("btn.generate"),
+ type="primary",
+ use_container_width=True,
+ disabled=True,
+ key="asset_generate_disabled"
+ )
+ return
+
+ # Show asset summary
+ st.info(tr("asset_based.output.ready", count=len(assets)))
+
+ # Generate button
+ if st.button(tr("btn.generate"), type="primary", use_container_width=True, key="asset_generate"):
+ # Validate
+ if not config_manager.validate():
+ st.error(tr("settings.not_configured"))
+ st.stop()
+
+ # Show progress
+ progress_bar = st.progress(0)
+ status_text = st.empty()
+
+ start_time = time.time()
+
+ try:
+ # Import pipeline
+ from pixelle_video.pipelines.asset_based import AssetBasedPipeline
+
+ # Create pipeline
+ pipeline = AssetBasedPipeline(pixelle_video)
+
+ # Progress callback
+ def update_progress(event: ProgressEvent):
+ if event.event_type == "analyzing_assets":
+ if event.extra_info == "start":
+ message = tr("asset_based.progress.analyzing_start", total=event.frame_total)
+ else:
+ message = tr("asset_based.progress.analyzing_complete", count=event.frame_total)
+ elif event.event_type == "analyzing_asset":
+ message = tr(
+ "asset_based.progress.analyzing_asset",
+ current=event.frame_current,
+ total=event.frame_total,
+ name=event.extra_info or ""
+ )
+ elif event.event_type == "generating_script":
+ if event.extra_info == "complete":
+ message = tr("asset_based.progress.script_complete")
+ else:
+ message = tr("asset_based.progress.generating_script")
+ elif event.event_type == "frame_step":
+ action_key = f"progress.step_{event.action}"
+ action_text = tr(action_key)
+ message = tr(
+ "progress.frame_step",
+ current=event.frame_current,
+ total=event.frame_total,
+ step=event.step,
+ action=action_text
+ )
+ elif event.event_type == "processing_frame":
+ message = tr(
+ "progress.frame",
+ current=event.frame_current,
+ total=event.frame_total
+ )
+ elif event.event_type == "concatenating":
+ if event.extra_info == "complete":
+ message = tr("asset_based.progress.concat_complete")
+ else:
+ message = tr("progress.concatenating")
+ elif event.event_type == "completed":
+ message = tr("progress.completed")
+ else:
+ message = tr(f"progress.{event.event_type}")
+
+ status_text.text(message)
+ progress_bar.progress(min(int(event.progress * 100), 99))
+
+ # Execute pipeline with progress callback
+ ctx = run_async(pipeline(
+ assets=video_params["assets"],
+ video_title=video_params.get("video_title", ""),
+ intent=video_params.get("intent"),
+ duration=video_params.get("duration", 30),
+ source=video_params.get("source", "runninghub"),
+ bgm_path=video_params.get("bgm_path"),
+ bgm_volume=video_params.get("bgm_volume", 0.2),
+ bgm_mode=video_params.get("bgm_mode", "loop"),
+ voice_id=video_params.get("voice_id", "zh-CN-YunjianNeural"),
+ tts_speed=video_params.get("tts_speed", 1.2),
+ progress_callback=update_progress
+ ))
+
+ total_time = time.time() - start_time
+
+ progress_bar.progress(100)
+ status_text.text(tr("status.success"))
+
+ # Display result
+ st.success(tr("status.video_generated", path=ctx.final_video_path))
+
+ st.markdown("---")
+
+ # Video info
+ if os.path.exists(ctx.final_video_path):
+ file_size_mb = os.path.getsize(ctx.final_video_path) / (1024 * 1024)
+ n_scenes = len(ctx.storyboard.frames) if ctx.storyboard else 0
+
+ info_text = (
+ f"⏱️ {tr('info.generation_time')} {total_time:.1f}s "
+ f"📦 {file_size_mb:.2f}MB "
+ f"🎬 {n_scenes}{tr('info.scenes_unit')}"
+ )
+ st.caption(info_text)
+
+ st.markdown("---")
+
+ # Video preview
+ st.video(ctx.final_video_path)
+
+ # Download button
+ with open(ctx.final_video_path, "rb") as video_file:
+ video_bytes = video_file.read()
+ video_filename = os.path.basename(ctx.final_video_path)
+ st.download_button(
+ label="⬇️ 下载视频" if get_language() == "zh_CN" else "⬇️ Download Video",
+ data=video_bytes,
+ file_name=video_filename,
+ mime="video/mp4",
+ use_container_width=True
+ )
+ else:
+ st.error(tr("status.video_not_found", path=ctx.final_video_path))
+
+ except Exception as e:
+ status_text.text("")
+ progress_bar.empty()
+ st.error(tr("status.error", error=str(e)))
+ logger.exception(e)
+ st.stop()
+
+
+# Register self
+register_pipeline_ui(AssetBasedPipelineUI)
+
diff --git a/web/pipelines/demo.py b/web/pipelines/demo.py
deleted file mode 100644
index 03cc1a6..0000000
--- a/web/pipelines/demo.py
+++ /dev/null
@@ -1,69 +0,0 @@
-# Copyright (C) 2025 AIDC-AI
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-# http://www.apache.org/licenses/LICENSE-2.0
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""
-Demo Pipeline UI
-
-Implements a custom layout for the Demo Pipeline.
-"""
-
-import streamlit as st
-from typing import Any
-from web.i18n import tr
-
-from web.pipelines.base import PipelineUI, register_pipeline_ui
-
-
-class DemoPipelineUI(PipelineUI):
- """
- Demo UI to verify the full-page plugin system.
- Uses a completely different layout (2 columns).
- """
- name = "demo"
- icon = "✨"
-
- @property
- def display_name(self):
- return tr("pipeline.demo.name")
-
- @property
- def description(self):
- return tr("pipeline.demo.description")
-
- def render(self, pixelle_video: Any):
- st.markdown("### ✨ Demo Pipeline Custom Layout")
- st.info("This pipeline uses a custom 2-column layout, demonstrating full UI control.")
-
- col1, col2 = st.columns([2, 1])
-
- with col1:
- with st.container(border=True):
- st.subheader("1. Input")
- topic = st.text_input("Enter Topic", placeholder="e.g. AI News")
- mood = st.selectbox("Mood", ["Happy", "Serious", "Funny"])
-
- st.markdown("---")
- st.subheader("2. Settings")
- # Simplified settings for demo
- n_scenes = st.slider("Scenes", 3, 10, 5)
-
- with col2:
- with st.container(border=True):
- st.subheader("3. Generate")
- if st.button("🚀 Generate Demo Video", type="primary", use_container_width=True):
- # Mock generation logic or call backend
- st.success(f"Generating video for '{topic}' ({mood}) with {n_scenes} scenes...")
- st.balloons()
-
-
-# Register self
-register_pipeline_ui(DemoPipelineUI)