支持fastapi服务
This commit is contained in:
48
api/routers/llm.py
Normal file
48
api/routers/llm.py
Normal file
@@ -0,0 +1,48 @@
|
||||
"""
|
||||
LLM (Large Language Model) endpoints
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, HTTPException
|
||||
from loguru import logger
|
||||
|
||||
from api.dependencies import ReelForgeDep
|
||||
from api.schemas.llm import LLMChatRequest, LLMChatResponse
|
||||
|
||||
router = APIRouter(prefix="/llm", tags=["LLM"])
|
||||
|
||||
|
||||
@router.post("/chat", response_model=LLMChatResponse)
|
||||
async def llm_chat(
|
||||
request: LLMChatRequest,
|
||||
reelforge: ReelForgeDep
|
||||
):
|
||||
"""
|
||||
LLM chat endpoint
|
||||
|
||||
Generate text response using configured LLM.
|
||||
|
||||
- **prompt**: User prompt/question
|
||||
- **temperature**: Creativity level (0.0-2.0, lower = more deterministic)
|
||||
- **max_tokens**: Maximum response length
|
||||
|
||||
Returns generated text response.
|
||||
"""
|
||||
try:
|
||||
logger.info(f"LLM chat request: {request.prompt[:50]}...")
|
||||
|
||||
# Call LLM service
|
||||
response = await reelforge.llm(
|
||||
prompt=request.prompt,
|
||||
temperature=request.temperature,
|
||||
max_tokens=request.max_tokens
|
||||
)
|
||||
|
||||
return LLMChatResponse(
|
||||
content=response,
|
||||
tokens_used=None # Can add token counting if needed
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"LLM chat error: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
Reference in New Issue
Block a user