Files
AI-Video/pixelle_video/pipelines/standard.py
2025-11-07 16:59:12 +08:00

389 lines
16 KiB
Python

"""
Standard Video Generation Pipeline
Standard workflow for generating short videos from topic or fixed script.
This is the default pipeline that replicates the original VideoGeneratorService logic.
"""
from datetime import datetime
from pathlib import Path
from typing import Optional, Callable, Literal
from loguru import logger
from pixelle_video.pipelines.base import BasePipeline
from pixelle_video.models.progress import ProgressEvent
from pixelle_video.models.storyboard import (
Storyboard,
StoryboardFrame,
StoryboardConfig,
ContentMetadata,
VideoGenerationResult
)
from pixelle_video.utils.content_generators import (
generate_title,
generate_narrations_from_topic,
split_narration_script,
generate_image_prompts,
)
class StandardPipeline(BasePipeline):
"""
Standard video generation pipeline
Workflow:
1. Generate/determine title
2. Generate narrations (from topic or split fixed script)
3. Generate image prompts for each narration
4. For each frame:
- Generate audio (TTS)
- Generate image
- Compose frame with template
- Create video segment
5. Concatenate all segments
6. Add BGM (optional)
Supports two modes:
- "generate": LLM generates narrations from topic
- "fixed": Use provided script as-is (each line = one narration)
"""
async def __call__(
self,
# === Input ===
text: str,
# === Processing Mode ===
mode: Literal["generate", "fixed"] = "generate",
# === Optional Title ===
title: Optional[str] = None,
# === Basic Config ===
n_scenes: int = 5, # Only used in generate mode; ignored in fixed mode
voice_id: str = "[Chinese] zh-CN Yunjian",
tts_workflow: Optional[str] = None,
tts_speed: float = 1.2,
ref_audio: Optional[str] = None, # Reference audio for voice cloning
output_path: Optional[str] = None,
# === LLM Parameters ===
min_narration_words: int = 5,
max_narration_words: int = 20,
min_image_prompt_words: int = 30,
max_image_prompt_words: int = 60,
# === Image Parameters ===
image_width: int = 1024,
image_height: int = 1024,
image_workflow: Optional[str] = None,
# === Video Parameters ===
video_fps: int = 30,
# === Frame Template (determines video size) ===
frame_template: Optional[str] = None,
# === Image Style ===
prompt_prefix: Optional[str] = None,
# === BGM Parameters ===
bgm_path: Optional[str] = None,
bgm_volume: float = 0.2,
bgm_mode: Literal["once", "loop"] = "loop",
# === Advanced Options ===
content_metadata: Optional[ContentMetadata] = None,
progress_callback: Optional[Callable[[ProgressEvent], None]] = None,
) -> VideoGenerationResult:
"""
Generate short video from text input
Args:
text: Text input (required)
- For generate mode: topic/theme (e.g., "如何提高学习效率")
- For fixed mode: complete narration script (each line is a narration)
mode: Processing mode (default "generate")
- "generate": LLM generates narrations from topic, creates n_scenes
- "fixed": Use existing script as-is, each line becomes a narration
Note: In fixed mode, n_scenes is ignored (uses actual line count)
title: Video title (optional)
- If provided, use it as the video title
- If not provided:
* generate mode → use text as title
* fixed mode → LLM generates title from script
n_scenes: Number of storyboard scenes (default 5)
Only effective in generate mode; ignored in fixed mode
voice_id: TTS voice ID (default "[Chinese] zh-CN Yunjian")
tts_workflow: TTS workflow filename (e.g., "tts_edge.json", None = use default)
tts_speed: TTS speed multiplier (1.0 = normal, 1.2 = 20% faster, default 1.2)
ref_audio: Reference audio path for voice cloning (optional)
output_path: Output video path (auto-generated if None)
min_narration_words: Min narration length (generate mode only)
max_narration_words: Max narration length (generate mode only)
min_image_prompt_words: Min image prompt length
max_image_prompt_words: Max image prompt length
image_width: Generated image width (default 1024)
image_height: Generated image height (default 1024)
image_workflow: Image workflow filename (e.g., "image_flux.json", None = use default)
video_fps: Video frame rate (default 30)
frame_template: HTML template path with size (None = use default "1080x1920/default.html")
Format: "SIZExSIZE/template.html" (e.g., "1080x1920/default.html", "1920x1080/modern.html")
Video size is automatically determined from template path
prompt_prefix: Image prompt prefix (overrides config.yaml if provided)
e.g., "anime style, vibrant colors" or "" for no prefix
bgm_path: BGM path (filename like "default.mp3", custom path, or None)
bgm_volume: BGM volume 0.0-1.0 (default 0.2)
bgm_mode: BGM mode "once" or "loop" (default "loop")
content_metadata: Content metadata (optional, for display)
progress_callback: Progress callback function(ProgressEvent)
Returns:
VideoGenerationResult with video path and metadata
"""
# ========== Step 0: Process text and determine title ==========
logger.info(f"🚀 Starting StandardPipeline in '{mode}' mode")
logger.info(f" Text length: {len(text)} chars")
# Determine final title
if title:
final_title = title
logger.info(f" Title: '{title}' (user-specified)")
else:
self._report_progress(progress_callback, "generating_title", 0.01)
if mode == "generate":
final_title = await generate_title(self.llm, text, strategy="auto")
logger.info(f" Title: '{final_title}' (auto-generated)")
else: # fixed
final_title = await generate_title(self.llm, text, strategy="llm")
logger.info(f" Title: '{final_title}' (LLM-generated)")
# ========== Step 0.5: Create isolated task directory ==========
from pixelle_video.utils.os_util import (
create_task_output_dir,
get_task_final_video_path
)
task_dir, task_id = create_task_output_dir()
logger.info(f"📁 Task directory created: {task_dir}")
logger.info(f" Task ID: {task_id}")
# Determine final video path
user_specified_output = None
if output_path is None:
output_path = get_task_final_video_path(task_id)
else:
user_specified_output = output_path
output_path = get_task_final_video_path(task_id)
logger.info(f" Will copy final video to: {user_specified_output}")
# Create storyboard config
config = StoryboardConfig(
task_id=task_id,
n_storyboard=n_scenes,
min_narration_words=min_narration_words,
max_narration_words=max_narration_words,
min_image_prompt_words=min_image_prompt_words,
max_image_prompt_words=max_image_prompt_words,
video_fps=video_fps,
voice_id=voice_id,
tts_workflow=tts_workflow,
tts_speed=tts_speed,
ref_audio=ref_audio,
image_width=image_width,
image_height=image_height,
image_workflow=image_workflow,
frame_template=frame_template or "1080x1920/default.html"
)
# Create storyboard
storyboard = Storyboard(
title=final_title,
config=config,
content_metadata=content_metadata,
created_at=datetime.now()
)
try:
# ========== Step 1: Generate/Split narrations ==========
if mode == "generate":
self._report_progress(progress_callback, "generating_narrations", 0.05)
narrations = await generate_narrations_from_topic(
self.llm,
topic=text,
n_scenes=n_scenes,
min_words=min_narration_words,
max_words=max_narration_words
)
logger.info(f"✅ Generated {len(narrations)} narrations")
else: # fixed
self._report_progress(progress_callback, "splitting_script", 0.05)
narrations = await split_narration_script(text)
logger.info(f"✅ Split script into {len(narrations)} segments (by lines)")
logger.info(f" Note: n_scenes={n_scenes} is ignored in fixed mode")
# ========== Step 2: Generate image prompts ==========
self._report_progress(progress_callback, "generating_image_prompts", 0.15)
# Override prompt_prefix if provided
original_prefix = None
if prompt_prefix is not None:
image_config = self.core.config.get("comfyui", {}).get("image", {})
original_prefix = image_config.get("prompt_prefix")
image_config["prompt_prefix"] = prompt_prefix
logger.info(f"Using custom prompt_prefix: '{prompt_prefix}'")
try:
# Create progress callback wrapper for image prompt generation
def image_prompt_progress(completed: int, total: int, message: str):
batch_progress = completed / total if total > 0 else 0
overall_progress = 0.15 + (batch_progress * 0.15)
self._report_progress(
progress_callback,
"generating_image_prompts",
overall_progress,
extra_info=message
)
# Generate base image prompts
base_image_prompts = await generate_image_prompts(
self.llm,
narrations=narrations,
min_words=min_image_prompt_words,
max_words=max_image_prompt_words,
progress_callback=image_prompt_progress
)
# Apply prompt prefix
from pixelle_video.utils.prompt_helper import build_image_prompt
image_config = self.core.config.get("comfyui", {}).get("image", {})
prompt_prefix_to_use = prompt_prefix if prompt_prefix is not None else image_config.get("prompt_prefix", "")
image_prompts = []
for base_prompt in base_image_prompts:
final_prompt = build_image_prompt(base_prompt, prompt_prefix_to_use)
image_prompts.append(final_prompt)
finally:
# Restore original prompt_prefix
if original_prefix is not None:
image_config["prompt_prefix"] = original_prefix
logger.info(f"✅ Generated {len(image_prompts)} image prompts")
# ========== Step 3: Create frames ==========
for i, (narration, image_prompt) in enumerate(zip(narrations, image_prompts)):
frame = StoryboardFrame(
index=i,
narration=narration,
image_prompt=image_prompt,
created_at=datetime.now()
)
storyboard.frames.append(frame)
# ========== Step 4: Process each frame ==========
for i, frame in enumerate(storyboard.frames):
base_progress = 0.2
frame_range = 0.6
per_frame_progress = frame_range / len(storyboard.frames)
# Create frame-specific progress callback
def frame_progress_callback(event: ProgressEvent):
overall_progress = base_progress + (per_frame_progress * i) + (per_frame_progress * event.progress)
if progress_callback:
adjusted_event = ProgressEvent(
event_type=event.event_type,
progress=overall_progress,
frame_current=event.frame_current,
frame_total=event.frame_total,
step=event.step,
action=event.action
)
progress_callback(adjusted_event)
# Report frame start
self._report_progress(
progress_callback,
"processing_frame",
base_progress + (per_frame_progress * i),
frame_current=i+1,
frame_total=len(storyboard.frames)
)
processed_frame = await self.core.frame_processor(
frame=frame,
storyboard=storyboard,
config=config,
total_frames=len(storyboard.frames),
progress_callback=frame_progress_callback
)
storyboard.total_duration += processed_frame.duration
logger.info(f"✅ Frame {i+1} completed ({processed_frame.duration:.2f}s)")
# ========== Step 5: Concatenate videos ==========
self._report_progress(progress_callback, "concatenating", 0.85)
segment_paths = [frame.video_segment_path for frame in storyboard.frames]
from pixelle_video.services.video import VideoService
video_service = VideoService()
final_video_path = video_service.concat_videos(
videos=segment_paths,
output=output_path,
bgm_path=bgm_path,
bgm_volume=bgm_volume,
bgm_mode=bgm_mode
)
storyboard.final_video_path = final_video_path
storyboard.completed_at = datetime.now()
# Copy to user-specified path if provided
if user_specified_output:
import shutil
Path(user_specified_output).parent.mkdir(parents=True, exist_ok=True)
shutil.copy2(final_video_path, user_specified_output)
logger.info(f"📹 Final video copied to: {user_specified_output}")
final_video_path = user_specified_output
storyboard.final_video_path = user_specified_output
logger.success(f"🎬 Video generation completed: {final_video_path}")
# ========== Step 6: Create result ==========
self._report_progress(progress_callback, "completed", 1.0)
video_path_obj = Path(final_video_path)
file_size = video_path_obj.stat().st_size
result = VideoGenerationResult(
video_path=final_video_path,
storyboard=storyboard,
duration=storyboard.total_duration,
file_size=file_size
)
logger.info(f"✅ Generated video: {final_video_path}")
logger.info(f" Duration: {storyboard.total_duration:.2f}s")
logger.info(f" Size: {file_size / (1024*1024):.2f} MB")
logger.info(f" Frames: {len(storyboard.frames)}")
return result
except Exception as e:
logger.error(f"❌ Video generation failed: {e}")
raise