187 lines
6.6 KiB
Python
187 lines
6.6 KiB
Python
# Copyright (C) 2025 AIDC-AI
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Pixelle-Video Core - Service Layer
|
|
|
|
Provides unified access to all capabilities (LLM, TTS, Image, etc.)
|
|
"""
|
|
|
|
from typing import Optional
|
|
|
|
from loguru import logger
|
|
|
|
from pixelle_video.config import config_manager
|
|
from pixelle_video.services.llm_service import LLMService
|
|
from pixelle_video.services.tts_service import TTSService
|
|
from pixelle_video.services.media import MediaService
|
|
from pixelle_video.services.video import VideoService
|
|
from pixelle_video.services.frame_processor import FrameProcessor
|
|
from pixelle_video.pipelines.standard import StandardPipeline
|
|
from pixelle_video.pipelines.custom import CustomPipeline
|
|
|
|
|
|
class PixelleVideoCore:
|
|
"""
|
|
Pixelle-Video Core - Service Layer
|
|
|
|
Provides unified access to all capabilities.
|
|
|
|
Usage:
|
|
from pixelle_video import pixelle_video
|
|
|
|
# Initialize
|
|
await pixelle_video.initialize()
|
|
|
|
# Use capabilities directly
|
|
answer = await pixelle_video.llm("Explain atomic habits")
|
|
audio = await pixelle_video.tts("Hello world")
|
|
media = await pixelle_video.media(prompt="a cat")
|
|
|
|
# Check active capabilities
|
|
print(f"Using LLM: {pixelle_video.llm.active}")
|
|
print(f"Available TTS: {pixelle_video.tts.available}")
|
|
|
|
Architecture (Simplified):
|
|
PixelleVideoCore (this class)
|
|
├── config (configuration)
|
|
├── llm (LLM service - direct OpenAI SDK)
|
|
├── tts (TTS service - ComfyKit workflows)
|
|
├── media (Media service - ComfyKit workflows, supports image & video)
|
|
└── pipelines (video generation pipelines)
|
|
├── standard (standard workflow)
|
|
├── custom (custom workflow template)
|
|
└── ... (extensible)
|
|
"""
|
|
|
|
def __init__(self, config_path: str = "config.yaml"):
|
|
"""
|
|
Initialize Pixelle-Video Core
|
|
|
|
Args:
|
|
config_path: Path to configuration file
|
|
"""
|
|
# Use global config manager singleton
|
|
self.config = config_manager.config.to_dict()
|
|
self._initialized = False
|
|
|
|
# Core services (initialized in initialize())
|
|
self.llm: Optional[LLMService] = None
|
|
self.tts: Optional[TTSService] = None
|
|
self.media: Optional[MediaService] = None
|
|
self.video: Optional[VideoService] = None
|
|
self.frame_processor: Optional[FrameProcessor] = None
|
|
|
|
# Video generation pipelines (dictionary of pipeline_name -> pipeline_instance)
|
|
self.pipelines = {}
|
|
|
|
# Default pipeline callable (for backward compatibility)
|
|
self.generate_video = None
|
|
|
|
async def initialize(self):
|
|
"""
|
|
Initialize core capabilities
|
|
|
|
This initializes all services and must be called before using any capabilities.
|
|
|
|
Example:
|
|
await pixelle_video.initialize()
|
|
"""
|
|
if self._initialized:
|
|
logger.warning("Pixelle-Video already initialized")
|
|
return
|
|
|
|
logger.info("🚀 Initializing Pixelle-Video...")
|
|
|
|
# 1. Initialize core services
|
|
self.llm = LLMService(self.config)
|
|
self.tts = TTSService(self.config)
|
|
self.media = MediaService(self.config)
|
|
self.video = VideoService()
|
|
self.frame_processor = FrameProcessor(self)
|
|
|
|
# 2. Register video generation pipelines
|
|
self.pipelines = {
|
|
"standard": StandardPipeline(self),
|
|
"custom": CustomPipeline(self),
|
|
}
|
|
logger.info(f"📹 Registered pipelines: {', '.join(self.pipelines.keys())}")
|
|
|
|
# 3. Set default pipeline callable (for backward compatibility)
|
|
self.generate_video = self._create_generate_video_wrapper()
|
|
|
|
self._initialized = True
|
|
logger.info("✅ Pixelle-Video initialized successfully\n")
|
|
|
|
def _create_generate_video_wrapper(self):
|
|
"""
|
|
Create a wrapper function for generate_video that supports pipeline selection
|
|
|
|
This maintains backward compatibility while adding pipeline support.
|
|
"""
|
|
async def generate_video_wrapper(
|
|
text: str,
|
|
pipeline: str = "standard",
|
|
**kwargs
|
|
):
|
|
"""
|
|
Generate video using specified pipeline
|
|
|
|
Args:
|
|
text: Input text
|
|
pipeline: Pipeline name ("standard", "book_summary", etc.)
|
|
**kwargs: Pipeline-specific parameters
|
|
|
|
Returns:
|
|
VideoGenerationResult
|
|
|
|
Examples:
|
|
# Use standard pipeline (default)
|
|
result = await pixelle_video.generate_video(
|
|
text="如何提高学习效率",
|
|
n_scenes=5
|
|
)
|
|
|
|
# Use custom pipeline
|
|
result = await pixelle_video.generate_video(
|
|
text=your_content,
|
|
pipeline="custom",
|
|
custom_param_example="custom_value"
|
|
)
|
|
"""
|
|
if pipeline not in self.pipelines:
|
|
available = ", ".join(self.pipelines.keys())
|
|
raise ValueError(
|
|
f"Unknown pipeline: '{pipeline}'. "
|
|
f"Available pipelines: {available}"
|
|
)
|
|
|
|
pipeline_instance = self.pipelines[pipeline]
|
|
return await pipeline_instance(text=text, **kwargs)
|
|
|
|
return generate_video_wrapper
|
|
|
|
@property
|
|
def project_name(self) -> str:
|
|
"""Get project name from config"""
|
|
return self.config.get("project_name", "Pixelle-Video")
|
|
|
|
def __repr__(self) -> str:
|
|
"""String representation"""
|
|
status = "initialized" if self._initialized else "not initialized"
|
|
pipelines = f"pipelines={list(self.pipelines.keys())}" if self._initialized else ""
|
|
return f"<PixelleVideoCore project={self.project_name!r} status={status} {pipelines}>"
|
|
|
|
|
|
# Global instance
|
|
pixelle_video = PixelleVideoCore()
|