Files
AI-Video/pixelle_video/pipelines/custom.py
2025-11-07 16:59:12 +08:00

376 lines
13 KiB
Python

"""
Custom Video Generation Pipeline
Template pipeline for creating your own custom video generation workflows.
This serves as a reference implementation showing how to extend BasePipeline.
For real projects, copy this file and modify it according to your needs.
"""
from datetime import datetime
from pathlib import Path
from typing import Optional, Callable
from loguru import logger
from pixelle_video.pipelines.base import BasePipeline
from pixelle_video.models.progress import ProgressEvent
from pixelle_video.models.storyboard import (
Storyboard,
StoryboardFrame,
StoryboardConfig,
ContentMetadata,
VideoGenerationResult
)
class CustomPipeline(BasePipeline):
"""
Custom video generation pipeline template
This is a template showing how to create your own pipeline with custom logic.
You can customize:
- Content processing logic
- Narration generation strategy
- Image prompt generation
- Frame composition
- Video assembly
Example usage:
# 1. Create your own pipeline by copying this file
# 2. Modify the __call__ method with your custom logic
# 3. Register it in service.py or dynamically
from pixelle_video.pipelines.custom import CustomPipeline
pixelle_video.pipelines["my_custom"] = CustomPipeline(pixelle_video)
# 4. Use it
result = await pixelle_video.generate_video(
text=your_content,
pipeline="my_custom",
# Your custom parameters here
)
"""
async def __call__(
self,
text: str,
# === Custom Parameters ===
# Add your own parameters here
custom_param_example: str = "default_value",
# === Standard Parameters (keep these for compatibility) ===
voice_id: str = "[Chinese] zh-CN Yunjian",
tts_workflow: Optional[str] = None,
tts_speed: float = 1.2,
ref_audio: Optional[str] = None,
image_workflow: Optional[str] = None,
image_width: int = 1024,
image_height: int = 1024,
frame_template: str = "1080x1920/default.html",
video_fps: int = 30,
output_path: Optional[str] = None,
bgm_path: Optional[str] = None,
bgm_volume: float = 0.2,
progress_callback: Optional[Callable[[ProgressEvent], None]] = None,
) -> VideoGenerationResult:
"""
Custom video generation workflow
Customize this method to implement your own logic.
Args:
text: Input text (customize meaning as needed)
custom_param_example: Your custom parameter
(other standard parameters...)
Returns:
VideoGenerationResult
"""
logger.info("Starting CustomPipeline")
logger.info(f"Input text length: {len(text)} chars")
logger.info(f"Custom parameter: {custom_param_example}")
# ========== Step 0: Setup ==========
self._report_progress(progress_callback, "initializing", 0.05)
# Create task directory
from pixelle_video.utils.os_util import (
create_task_output_dir,
get_task_final_video_path
)
task_dir, task_id = create_task_output_dir()
logger.info(f"Task directory: {task_dir}")
user_specified_output = None
if output_path is None:
output_path = get_task_final_video_path(task_id)
else:
user_specified_output = output_path
output_path = get_task_final_video_path(task_id)
# ========== Step 1: Process content (CUSTOMIZE THIS) ==========
self._report_progress(progress_callback, "processing_content", 0.10)
# Example: Generate title using LLM
from pixelle_video.utils.content_generators import generate_title
title = await generate_title(self.llm, text, strategy="llm")
logger.info(f"Generated title: '{title}'")
# Example: Split or generate narrations
# Option A: Split by lines (for fixed script)
narrations = [line.strip() for line in text.split('\n') if line.strip()]
# Option B: Use LLM to generate narrations (uncomment to use)
# from pixelle_video.utils.content_generators import generate_narrations_from_topic
# narrations = await generate_narrations_from_topic(
# self.llm,
# topic=text,
# n_scenes=5,
# min_words=20,
# max_words=80
# )
logger.info(f"Generated {len(narrations)} narrations")
# ========== Step 2: Generate image prompts (CUSTOMIZE THIS) ==========
self._report_progress(progress_callback, "generating_image_prompts", 0.25)
# Example: Generate image prompts using LLM
from pixelle_video.utils.content_generators import generate_image_prompts
image_prompts = await generate_image_prompts(
self.llm,
narrations=narrations,
min_words=30,
max_words=60
)
# Example: Apply custom prompt prefix
from pixelle_video.utils.prompt_helper import build_image_prompt
custom_prefix = "cinematic style, professional lighting" # Customize this
final_image_prompts = []
for base_prompt in image_prompts:
final_prompt = build_image_prompt(base_prompt, custom_prefix)
final_image_prompts.append(final_prompt)
logger.info(f"Generated {len(final_image_prompts)} image prompts")
# ========== Step 3: Create storyboard ==========
config = StoryboardConfig(
task_id=task_id,
n_storyboard=len(narrations),
min_narration_words=20,
max_narration_words=80,
min_image_prompt_words=30,
max_image_prompt_words=60,
video_fps=video_fps,
voice_id=voice_id,
tts_workflow=tts_workflow,
tts_speed=tts_speed,
ref_audio=ref_audio,
image_width=image_width,
image_height=image_height,
image_workflow=image_workflow,
frame_template=frame_template
)
# Optional: Add custom metadata
content_metadata = ContentMetadata(
title=title,
subtitle="Custom Pipeline Output"
)
storyboard = Storyboard(
title=title,
config=config,
content_metadata=content_metadata,
created_at=datetime.now()
)
# Create frames
for i, (narration, image_prompt) in enumerate(zip(narrations, final_image_prompts)):
frame = StoryboardFrame(
index=i,
narration=narration,
image_prompt=image_prompt,
created_at=datetime.now()
)
storyboard.frames.append(frame)
try:
# ========== Step 4: Process each frame ==========
# This is the standard frame processing logic
# You can customize frame processing if needed
for i, frame in enumerate(storyboard.frames):
base_progress = 0.3
frame_range = 0.5
per_frame_progress = frame_range / len(storyboard.frames)
self._report_progress(
progress_callback,
"processing_frame",
base_progress + (per_frame_progress * i),
frame_current=i+1,
frame_total=len(storyboard.frames)
)
# Use core frame processor (standard logic)
processed_frame = await self.core.frame_processor(
frame=frame,
storyboard=storyboard,
config=config,
total_frames=len(storyboard.frames),
progress_callback=None
)
storyboard.total_duration += processed_frame.duration
logger.info(f"Frame {i+1} completed ({processed_frame.duration:.2f}s)")
# ========== Step 5: Concatenate videos ==========
self._report_progress(progress_callback, "concatenating", 0.85)
segment_paths = [frame.video_segment_path for frame in storyboard.frames]
from pixelle_video.services.video import VideoService
video_service = VideoService()
final_video_path = video_service.concat_videos(
videos=segment_paths,
output=output_path,
bgm_path=bgm_path,
bgm_volume=bgm_volume,
bgm_mode="loop"
)
storyboard.final_video_path = final_video_path
storyboard.completed_at = datetime.now()
# Copy to user-specified path if provided
if user_specified_output:
import shutil
Path(user_specified_output).parent.mkdir(parents=True, exist_ok=True)
shutil.copy2(final_video_path, user_specified_output)
logger.info(f"Final video copied to: {user_specified_output}")
final_video_path = user_specified_output
storyboard.final_video_path = user_specified_output
logger.success(f"Custom pipeline video completed: {final_video_path}")
# ========== Step 6: Create result ==========
self._report_progress(progress_callback, "completed", 1.0)
video_path_obj = Path(final_video_path)
file_size = video_path_obj.stat().st_size
result = VideoGenerationResult(
video_path=final_video_path,
storyboard=storyboard,
duration=storyboard.total_duration,
file_size=file_size
)
logger.info(f"Custom pipeline completed")
logger.info(f"Title: {title}")
logger.info(f"Duration: {storyboard.total_duration:.2f}s")
logger.info(f"Size: {file_size / (1024*1024):.2f} MB")
logger.info(f"Frames: {len(storyboard.frames)}")
return result
except Exception as e:
logger.error(f"Custom pipeline failed: {e}")
raise
# ==================== Custom Helper Methods ====================
# Add your own helper methods here
async def _custom_content_analysis(self, text: str) -> dict:
"""
Example: Custom content analysis logic
You can add your own helper methods to process content,
extract metadata, or perform custom transformations.
"""
# Your custom logic here
return {
"processed": text,
"metadata": {}
}
async def _custom_prompt_generation(self, context: str) -> str:
"""
Example: Custom prompt generation logic
Create specialized prompts based on your use case.
"""
prompt = f"Generate content based on: {context}"
response = await self.llm(prompt, temperature=0.7, max_tokens=500)
return response.strip()
# ==================== Usage Examples ====================
"""
Example 1: Register and use custom pipeline
----------------------------------------
from pixelle_video import pixelle_video
from pixelle_video.pipelines.custom import CustomPipeline
# Initialize
await pixelle_video.initialize()
# Register custom pipeline
pixelle_video.pipelines["my_custom"] = CustomPipeline(pixelle_video)
# Use it
result = await pixelle_video.generate_video(
text="Your input content here",
pipeline="my_custom",
custom_param_example="custom_value"
)
Example 2: Create your own pipeline class
----------------------------------------
from pixelle_video.pipelines.custom import CustomPipeline
class MySpecialPipeline(CustomPipeline):
async def __call__(self, text: str, **kwargs):
# Your completely custom logic
logger.info("Running my special pipeline")
# You can reuse parts from CustomPipeline or start from scratch
# ...
return result
Example 3: Inline custom pipeline
----------------------------------------
from pixelle_video.pipelines.base import BasePipeline
class QuickPipeline(BasePipeline):
async def __call__(self, text: str, **kwargs):
# Quick custom logic
narrations = text.split('\\n')
for narration in narrations:
audio = await self.tts(narration)
image = await self.image(prompt=f"illustration of {narration}")
# ... process frame
# ... concatenate and return
return result
# Use immediately
pixelle_video.pipelines["quick"] = QuickPipeline(pixelle_video)
result = await pixelle_video.generate_video(text=content, pipeline="quick")
"""