197 lines
6.2 KiB
Python
197 lines
6.2 KiB
Python
# Copyright (C) 2025 AIDC-AI
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
LLM (Large Language Model) Service - Direct OpenAI SDK implementation
|
|
"""
|
|
|
|
import os
|
|
from typing import Optional
|
|
|
|
from openai import AsyncOpenAI
|
|
from loguru import logger
|
|
|
|
|
|
class LLMService:
|
|
"""
|
|
LLM (Large Language Model) service
|
|
|
|
Direct implementation using OpenAI SDK. No capability layer needed.
|
|
|
|
Supports all OpenAI SDK compatible providers:
|
|
- OpenAI (gpt-4o, gpt-4o-mini, gpt-3.5-turbo)
|
|
- Alibaba Qwen (qwen-max, qwen-plus, qwen-turbo)
|
|
- Anthropic Claude (claude-sonnet-4-5, claude-opus-4, claude-haiku-4)
|
|
- DeepSeek (deepseek-chat)
|
|
- Moonshot Kimi (moonshot-v1-8k, moonshot-v1-32k, moonshot-v1-128k)
|
|
- Ollama (llama3.2, qwen2.5, mistral, codellama) - FREE & LOCAL!
|
|
- Any custom provider with OpenAI-compatible API
|
|
|
|
Usage:
|
|
# Direct call
|
|
answer = await pixelle_video.llm("Explain atomic habits")
|
|
|
|
# With parameters
|
|
answer = await pixelle_video.llm(
|
|
prompt="Explain atomic habits in 3 sentences",
|
|
temperature=0.7,
|
|
max_tokens=2000
|
|
)
|
|
"""
|
|
|
|
def __init__(self, config: dict):
|
|
"""
|
|
Initialize LLM service
|
|
|
|
Args:
|
|
config: Full application config dict
|
|
"""
|
|
self.config = config.get("llm", {})
|
|
self._client: Optional[AsyncOpenAI] = None
|
|
|
|
def _get_config_value(self, key: str, default=None):
|
|
"""
|
|
Get config value from config file
|
|
|
|
Args:
|
|
key: Config key name
|
|
default: Default value if not found
|
|
|
|
Returns:
|
|
Config value
|
|
"""
|
|
return self.config.get(key, default)
|
|
|
|
def _create_client(
|
|
self,
|
|
api_key: Optional[str] = None,
|
|
base_url: Optional[str] = None,
|
|
) -> AsyncOpenAI:
|
|
"""
|
|
Create OpenAI client
|
|
|
|
Args:
|
|
api_key: API key (optional, uses config if not provided)
|
|
base_url: Base URL (optional, uses config if not provided)
|
|
|
|
Returns:
|
|
AsyncOpenAI client instance
|
|
"""
|
|
# Get API key (priority: parameter > config)
|
|
final_api_key = (
|
|
api_key
|
|
or self._get_config_value("api_key")
|
|
or "dummy-key" # Ollama doesn't need real key
|
|
)
|
|
|
|
# Get base URL (priority: parameter > config)
|
|
final_base_url = (
|
|
base_url
|
|
or self._get_config_value("base_url")
|
|
)
|
|
|
|
# Create client
|
|
client_kwargs = {"api_key": final_api_key}
|
|
if final_base_url:
|
|
client_kwargs["base_url"] = final_base_url
|
|
|
|
return AsyncOpenAI(**client_kwargs)
|
|
|
|
async def __call__(
|
|
self,
|
|
prompt: str,
|
|
api_key: Optional[str] = None,
|
|
base_url: Optional[str] = None,
|
|
model: Optional[str] = None,
|
|
temperature: float = 0.7,
|
|
max_tokens: int = 2000,
|
|
**kwargs
|
|
) -> str:
|
|
"""
|
|
Generate text using LLM
|
|
|
|
Args:
|
|
prompt: The prompt to generate from
|
|
api_key: API key (optional, uses config if not provided)
|
|
base_url: Base URL (optional, uses config if not provided)
|
|
model: Model name (optional, uses config if not provided)
|
|
temperature: Sampling temperature (0.0-2.0). Lower is more deterministic.
|
|
max_tokens: Maximum tokens to generate
|
|
**kwargs: Additional provider-specific parameters
|
|
|
|
Returns:
|
|
Generated text
|
|
|
|
Examples:
|
|
# Use config from config.yaml
|
|
answer = await pixelle_video.llm("Explain atomic habits")
|
|
|
|
# Override with custom parameters
|
|
answer = await pixelle_video.llm(
|
|
prompt="Explain atomic habits in 3 sentences",
|
|
api_key="sk-custom-key",
|
|
base_url="https://api.custom.com/v1",
|
|
model="custom-model",
|
|
temperature=0.7,
|
|
max_tokens=500
|
|
)
|
|
"""
|
|
# Create client (new instance each time to support parameter overrides)
|
|
client = self._create_client(api_key=api_key, base_url=base_url)
|
|
|
|
# Get model (priority: parameter > config)
|
|
final_model = (
|
|
model
|
|
or self._get_config_value("model")
|
|
or "gpt-3.5-turbo" # Default fallback
|
|
)
|
|
|
|
logger.debug(f"LLM call: model={final_model}, base_url={client.base_url}")
|
|
|
|
try:
|
|
response = await client.chat.completions.create(
|
|
model=final_model,
|
|
messages=[{"role": "user", "content": prompt}],
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
**kwargs
|
|
)
|
|
|
|
result = response.choices[0].message.content
|
|
logger.debug(f"LLM response length: {len(result)} chars")
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error(f"LLM call error (model={final_model}, base_url={client.base_url}): {e}")
|
|
raise
|
|
|
|
@property
|
|
def active(self) -> str:
|
|
"""
|
|
Get active model name
|
|
|
|
Returns:
|
|
Active model name
|
|
|
|
Example:
|
|
print(f"Using model: {pixelle_video.llm.active}")
|
|
"""
|
|
return self._get_config_value("model", "gpt-3.5-turbo")
|
|
|
|
def __repr__(self) -> str:
|
|
"""String representation"""
|
|
model = self.active
|
|
base_url = self._get_config_value("base_url", "default")
|
|
return f"<LLMService model={model!r} base_url={base_url!r}>"
|
|
|