- Add FeatureExtractor for CLIP-based image/text feature extraction - Add ObjectiveMetricsCalculator for technical quality metrics - Add VLMEvaluator for vision language model evaluation - Add HybridQualityGate combining objective + VLM evaluation - Enhance CharacterMemory with visual feature support - Add quality optional dependency (torch, ftfy, regex) - Add unit tests for new modules 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
244 lines
7.9 KiB
Python
244 lines
7.9 KiB
Python
# Copyright (C) 2025 AIDC-AI
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
VLMEvaluator - Vision Language Model based image quality evaluation
|
|
|
|
Supports multiple VLM providers:
|
|
- OpenAI: gpt-4-vision-preview, gpt-4o
|
|
- Qwen-VL: qwen-vl-max, qwen-vl-plus
|
|
- GLM-4V: via OpenAI compatible API
|
|
"""
|
|
|
|
import base64
|
|
import json
|
|
import re
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional, List
|
|
from pathlib import Path
|
|
|
|
from loguru import logger
|
|
|
|
|
|
@dataclass
|
|
class VLMEvaluationResult:
|
|
"""Result from VLM evaluation"""
|
|
aesthetic_score: float = 0.0
|
|
text_match_score: float = 0.0
|
|
technical_score: float = 0.0
|
|
issues: List[str] = field(default_factory=list)
|
|
raw_response: Optional[str] = None
|
|
|
|
def to_dict(self) -> dict:
|
|
return {
|
|
"aesthetic_score": self.aesthetic_score,
|
|
"text_match_score": self.text_match_score,
|
|
"technical_score": self.technical_score,
|
|
"issues": self.issues,
|
|
}
|
|
|
|
|
|
@dataclass
|
|
class VLMEvaluatorConfig:
|
|
"""Configuration for VLM evaluator"""
|
|
provider: str = "auto" # "openai", "qwen", "auto"
|
|
model: Optional[str] = None # Auto-select if None
|
|
max_image_size: int = 1024 # Max image dimension
|
|
timeout: int = 30
|
|
temperature: float = 0.1 # Low for consistent evaluation
|
|
|
|
|
|
class VLMEvaluator:
|
|
"""
|
|
VLM-based image quality evaluator
|
|
|
|
Example:
|
|
>>> evaluator = VLMEvaluator(llm_service)
|
|
>>> result = await evaluator.evaluate_image(
|
|
... image_path="frame_001.png",
|
|
... prompt="A sunset over mountains"
|
|
... )
|
|
"""
|
|
|
|
EVALUATION_PROMPT = """请评估这张AI生成的图片质量。
|
|
|
|
生成提示词: {prompt}
|
|
{narration_section}
|
|
|
|
请从以下三个维度评分(0.0-1.0):
|
|
|
|
1. **美学质量** (aesthetic_score): 构图、色彩搭配、视觉吸引力
|
|
2. **图文匹配** (text_match_score): 图片与提示词的语义对齐程度
|
|
3. **技术质量** (technical_score): 清晰度、无伪影、无变形
|
|
|
|
同时列出发现的问题(如有)。
|
|
|
|
请以JSON格式返回:
|
|
```json
|
|
{{
|
|
"aesthetic_score": 0.0-1.0,
|
|
"text_match_score": 0.0-1.0,
|
|
"technical_score": 0.0-1.0,
|
|
"issues": ["问题1", "问题2"]
|
|
}}
|
|
```"""
|
|
|
|
def __init__(
|
|
self,
|
|
llm_service=None,
|
|
config: Optional[VLMEvaluatorConfig] = None
|
|
):
|
|
self.llm_service = llm_service
|
|
self.config = config or VLMEvaluatorConfig()
|
|
|
|
def _encode_image_base64(self, image_path: str) -> str:
|
|
"""Encode image to base64, with optional resizing"""
|
|
from PIL import Image
|
|
import io
|
|
|
|
with Image.open(image_path) as img:
|
|
# Resize if too large
|
|
max_size = self.config.max_image_size
|
|
if max(img.size) > max_size:
|
|
ratio = max_size / max(img.size)
|
|
new_size = (int(img.size[0] * ratio), int(img.size[1] * ratio))
|
|
img = img.resize(new_size, Image.Resampling.LANCZOS)
|
|
|
|
# Convert to RGB if needed
|
|
if img.mode in ('RGBA', 'P'):
|
|
img = img.convert('RGB')
|
|
|
|
# Encode to base64
|
|
buffer = io.BytesIO()
|
|
img.save(buffer, format='JPEG', quality=85)
|
|
return base64.b64encode(buffer.getvalue()).decode('utf-8')
|
|
|
|
def _parse_response(self, response: str) -> VLMEvaluationResult:
|
|
"""Parse VLM response to extract scores"""
|
|
result = VLMEvaluationResult(raw_response=response)
|
|
|
|
try:
|
|
# Try to extract JSON from response
|
|
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', response)
|
|
if json_match:
|
|
json_str = json_match.group(1)
|
|
else:
|
|
# Try to find raw JSON
|
|
brace_start = response.find('{')
|
|
brace_end = response.rfind('}')
|
|
if brace_start != -1 and brace_end > brace_start:
|
|
json_str = response[brace_start:brace_end + 1]
|
|
else:
|
|
logger.warning("No JSON found in VLM response")
|
|
return result
|
|
|
|
data = json.loads(json_str)
|
|
|
|
result.aesthetic_score = float(data.get('aesthetic_score', 0.0))
|
|
result.text_match_score = float(data.get('text_match_score', 0.0))
|
|
result.technical_score = float(data.get('technical_score', 0.0))
|
|
result.issues = data.get('issues', [])
|
|
|
|
# Clamp scores to valid range
|
|
result.aesthetic_score = max(0.0, min(1.0, result.aesthetic_score))
|
|
result.text_match_score = max(0.0, min(1.0, result.text_match_score))
|
|
result.technical_score = max(0.0, min(1.0, result.technical_score))
|
|
|
|
except (json.JSONDecodeError, ValueError) as e:
|
|
logger.warning(f"Failed to parse VLM response: {e}")
|
|
|
|
return result
|
|
|
|
async def evaluate_image(
|
|
self,
|
|
image_path: str,
|
|
prompt: str,
|
|
narration: Optional[str] = None
|
|
) -> VLMEvaluationResult:
|
|
"""
|
|
Evaluate image quality using VLM
|
|
|
|
Args:
|
|
image_path: Path to image file
|
|
prompt: Generation prompt
|
|
narration: Optional narration text
|
|
|
|
Returns:
|
|
VLMEvaluationResult with scores
|
|
"""
|
|
if not Path(image_path).exists():
|
|
return VLMEvaluationResult(issues=["Image file not found"])
|
|
|
|
if not self.llm_service:
|
|
logger.warning("No LLM service provided for VLM evaluation")
|
|
return VLMEvaluationResult(issues=["No LLM service"])
|
|
|
|
try:
|
|
# Encode image
|
|
image_b64 = self._encode_image_base64(image_path)
|
|
|
|
# Build prompt
|
|
narration_section = f"旁白文案: {narration}" if narration else ""
|
|
eval_prompt = self.EVALUATION_PROMPT.format(
|
|
prompt=prompt,
|
|
narration_section=narration_section
|
|
)
|
|
|
|
# Call VLM via LLM service with vision
|
|
response = await self._call_vlm(image_b64, eval_prompt)
|
|
|
|
return self._parse_response(response)
|
|
|
|
except Exception as e:
|
|
logger.error(f"VLM evaluation failed: {e}")
|
|
return VLMEvaluationResult(issues=[f"Evaluation error: {str(e)}"])
|
|
|
|
async def _call_vlm(self, image_b64: str, prompt: str) -> str:
|
|
"""Call VLM with image and prompt"""
|
|
from openai import AsyncOpenAI
|
|
|
|
# Get config from LLM service
|
|
base_url = self.llm_service._get_config_value("base_url")
|
|
api_key = self.llm_service._get_config_value("api_key")
|
|
model = self.config.model or self.llm_service._get_config_value("model")
|
|
|
|
client = AsyncOpenAI(api_key=api_key, base_url=base_url)
|
|
|
|
# Build message with image
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": f"data:image/jpeg;base64,{image_b64}"
|
|
}
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": prompt
|
|
}
|
|
]
|
|
}
|
|
]
|
|
|
|
response = await client.chat.completions.create(
|
|
model=model,
|
|
messages=messages,
|
|
temperature=self.config.temperature,
|
|
max_tokens=500,
|
|
timeout=self.config.timeout
|
|
)
|
|
|
|
return response.choices[0].message.content
|