Files
AI-Video/pixelle_video/services/quality/character_analyzer.py

243 lines
9.3 KiB
Python

# Copyright (C) 2025 AIDC-AI
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
CharacterAnalyzer - VLM-based character appearance extraction
Analyzes reference images to extract detailed character descriptions
for maintaining visual consistency across video frames.
"""
import base64
import json
import os
import re
from dataclasses import dataclass
from typing import List, Optional
from loguru import logger
from openai import AsyncOpenAI
@dataclass
class CharacterAnalysisResult:
"""Result of character image analysis"""
appearance_description: str = "" # Physical features
clothing_description: str = "" # What they're wearing
distinctive_features: List[str] = None # Unique identifying features
def __post_init__(self):
if self.distinctive_features is None:
self.distinctive_features = []
def to_prompt_description(self) -> str:
"""Generate a prompt-ready character description"""
parts = []
if self.appearance_description:
parts.append(self.appearance_description)
if self.clothing_description:
parts.append(f"wearing {self.clothing_description}")
if self.distinctive_features:
features = ", ".join(self.distinctive_features)
parts.append(f"with {features}")
return ", ".join(parts) if parts else ""
def to_dict(self) -> dict:
return {
"appearance_description": self.appearance_description,
"clothing_description": self.clothing_description,
"distinctive_features": self.distinctive_features,
}
class CharacterAnalyzer:
"""
VLM-based character appearance analyzer
Analyzes reference images to extract detailed character descriptions
that can be injected into image generation prompts.
Example:
>>> analyzer = CharacterAnalyzer()
>>> result = await analyzer.analyze_reference_image("character.png")
>>> print(result.appearance_description)
"young woman with long black hair, round face, fair skin"
>>> print(result.to_prompt_description())
"young woman with long black hair, round face, fair skin, wearing blue hoodie, with round glasses"
"""
def __init__(self):
"""Initialize CharacterAnalyzer"""
pass
async def analyze_reference_image(
self,
image_path: str,
) -> CharacterAnalysisResult:
"""
Analyze a reference image to extract character appearance
Args:
image_path: Path to the reference image
Returns:
CharacterAnalysisResult with extracted descriptions
"""
logger.info(f"Analyzing character reference image: {image_path}")
# Check if file exists
if not os.path.exists(image_path):
logger.warning(f"Image not found: {image_path}")
return CharacterAnalysisResult()
try:
# Read and encode image
with open(image_path, "rb") as f:
image_data = base64.b64encode(f.read()).decode("utf-8")
# Determine image type
ext = os.path.splitext(image_path)[1].lower()
media_type = "image/png" if ext == ".png" else "image/jpeg"
# VLM prompt for character analysis
analysis_prompt = """Analyze this character/person image and extract detailed visual descriptions.
Provide your analysis in JSON format:
{
"appearance_description": "Detailed physical features including: hair (color, length, style), face shape, eye color, skin tone, approximate age, gender, body type. Be specific and descriptive.",
"clothing_description": "What they're wearing - describe colors, style, and notable items.",
"distinctive_features": ["list", "of", "unique", "identifying", "features"]
}
Focus on visually distinctive and reproducible features. Be specific enough that another image generator could recreate a similar-looking character.
Examples of good distinctive_features: "round glasses", "freckles", "scar on left cheek", "silver earrings", "bright red lipstick"
Output ONLY the JSON object, no additional text."""
# Build multimodal message
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": analysis_prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:{media_type};base64,{image_data}"
}
}
]
}
]
# Get LLM config
from pixelle_video.config import config_manager
llm_config = config_manager.config.llm
# Create OpenAI client for VLM call
client = AsyncOpenAI(
api_key=llm_config.api_key,
base_url=llm_config.base_url
)
# Use vision model - GLM-4V for ZhiPu, or fall back to configured model
# Vision models: glm-4v, glm-4v-flash, gpt-4-vision-preview
vision_model = llm_config.model
if "glm" in llm_config.model.lower() and "v" not in llm_config.model.lower():
vision_model = "glm-4v-flash" # Use GLM-4V for vision tasks
logger.info(f"Using vision model: {vision_model}")
# Call VLM
response = await client.chat.completions.create(
model=vision_model,
messages=messages,
temperature=0.3,
max_tokens=2000 # Increased to avoid truncation
)
vlm_response = response.choices[0].message.content if response.choices else None
if vlm_response:
logger.debug(f"VLM character analysis response: {vlm_response[:150] if len(vlm_response) > 150 else vlm_response}...")
else:
logger.warning(f"VLM returned empty content. Full response: {response}")
# Parse response
return self._parse_response(vlm_response)
except Exception as e:
logger.error(f"Character analysis failed: {e}")
return CharacterAnalysisResult()
def _parse_response(self, response: str) -> CharacterAnalysisResult:
"""Parse VLM response into CharacterAnalysisResult"""
if not response:
logger.warning("Empty VLM response")
return CharacterAnalysisResult()
# Log full response for debugging
logger.debug(f"Full VLM response:\n{response}")
try:
# Remove markdown code blocks if present
cleaned = response.strip()
if cleaned.startswith("```json"):
cleaned = cleaned[7:]
elif cleaned.startswith("```"):
cleaned = cleaned[3:]
if cleaned.endswith("```"):
cleaned = cleaned[:-3]
cleaned = cleaned.strip()
# Try to extract JSON from response
match = re.search(r'\{[\s\S]*\}', cleaned)
if match:
json_str = match.group()
logger.debug(f"Extracted JSON: {json_str[:200]}...")
data = json.loads(json_str)
else:
logger.warning(f"No JSON found in response, trying direct parse")
data = json.loads(cleaned)
result = CharacterAnalysisResult(
appearance_description=data.get("appearance_description", ""),
clothing_description=data.get("clothing_description", ""),
distinctive_features=data.get("distinctive_features", []),
)
logger.info(f"Character analysis extracted: {result.appearance_description[:80]}...")
return result
except (json.JSONDecodeError, KeyError) as e:
logger.warning(f"Failed to parse VLM response: {e}")
logger.debug(f"Response that failed to parse: {response[:500]}")
# Try to use the raw response as appearance description (fallback)
if response and 20 < len(response) < 500:
# Clean up the response
fallback = response.strip()
if "```" in fallback:
fallback = re.sub(r'```.*?```', '', fallback, flags=re.DOTALL).strip()
if fallback:
logger.info(f"Using raw response as appearance: {fallback[:80]}...")
return CharacterAnalysisResult(
appearance_description=fallback
)
return CharacterAnalysisResult()