Files
AI-Video/tests/test_objective_metrics.py
empty 56db9bf9d2 feat: Add hybrid quality evaluation system with CLIP and VLM support
- Add FeatureExtractor for CLIP-based image/text feature extraction
- Add ObjectiveMetricsCalculator for technical quality metrics
- Add VLMEvaluator for vision language model evaluation
- Add HybridQualityGate combining objective + VLM evaluation
- Enhance CharacterMemory with visual feature support
- Add quality optional dependency (torch, ftfy, regex)
- Add unit tests for new modules

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-05 15:56:44 +08:00

65 lines
1.9 KiB
Python

# Copyright (C) 2025 AIDC-AI
# Tests for ObjectiveMetricsCalculator
import pytest
from pathlib import Path
from pixelle_video.services.quality.objective_metrics import (
ObjectiveMetricsCalculator,
TechnicalMetrics,
)
class TestTechnicalMetrics:
"""Tests for TechnicalMetrics dataclass"""
def test_default_values(self):
metrics = TechnicalMetrics()
assert metrics.sharpness_score == 0.0
assert metrics.overall_technical == 0.0
assert metrics.issues == []
def test_to_dict(self):
metrics = TechnicalMetrics(
sharpness_score=0.8,
brightness_score=0.5,
issues=["test issue"]
)
d = metrics.to_dict()
assert d["sharpness_score"] == 0.8
assert "test issue" in d["issues"]
class TestObjectiveMetricsCalculator:
"""Tests for ObjectiveMetricsCalculator"""
def test_init_default(self):
calc = ObjectiveMetricsCalculator()
assert calc.sharpness_threshold == 0.3
def test_init_custom(self):
calc = ObjectiveMetricsCalculator(sharpness_threshold=0.5)
assert calc.sharpness_threshold == 0.5
def test_analyze_nonexistent_image(self):
calc = ObjectiveMetricsCalculator()
metrics = calc.analyze_image("/nonexistent/path.png")
assert len(metrics.issues) > 0
assert "failed" in metrics.issues[0].lower()
def test_analyze_real_image(self, tmp_path):
"""Test with a real image file"""
from PIL import Image
# Create test image
img = Image.new("RGB", (256, 256), color=(128, 128, 128))
img_path = tmp_path / "test.png"
img.save(img_path)
calc = ObjectiveMetricsCalculator()
metrics = calc.analyze_image(str(img_path))
assert 0.0 <= metrics.sharpness_score <= 1.0
assert 0.0 <= metrics.brightness_score <= 1.0
assert 0.0 <= metrics.overall_technical <= 1.0