add Manga Model
This commit is contained in:
@@ -5,7 +5,7 @@ import numpy as np
|
||||
import torch
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.helper import pad_img_to_modulo, download_model, norm_img, get_cache_path_by_url
|
||||
from lama_cleaner.helper import download_model, norm_img, get_cache_path_by_url
|
||||
from lama_cleaner.model.base import InpaintModel
|
||||
from lama_cleaner.schema import Config
|
||||
|
||||
|
||||
120
lama_cleaner/model/manga.py
Normal file
120
lama_cleaner/model/manga.py
Normal file
@@ -0,0 +1,120 @@
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import time
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.helper import get_cache_path_by_url, load_jit_model
|
||||
from lama_cleaner.model.base import InpaintModel
|
||||
from lama_cleaner.schema import Config
|
||||
|
||||
# def norm(np_img):
|
||||
# return np_img / 255 * 2 - 1.0
|
||||
#
|
||||
#
|
||||
# @torch.no_grad()
|
||||
# def run():
|
||||
# name = 'manga_1080x740.jpg'
|
||||
# img_p = f'/Users/qing/code/github/MangaInpainting/examples/test/imgs/{name}'
|
||||
# mask_p = f'/Users/qing/code/github/MangaInpainting/examples/test/masks/mask_{name}'
|
||||
# erika_model = torch.jit.load('erika.jit')
|
||||
# manga_inpaintor_model = torch.jit.load('manga_inpaintor.jit')
|
||||
#
|
||||
# img = cv2.imread(img_p)
|
||||
# gray_img = cv2.imread(img_p, cv2.IMREAD_GRAYSCALE)
|
||||
# mask = cv2.imread(mask_p, cv2.IMREAD_GRAYSCALE)
|
||||
#
|
||||
# kernel = np.ones((9, 9), dtype=np.uint8)
|
||||
# mask = cv2.dilate(mask, kernel, 2)
|
||||
# # cv2.imwrite("mask.jpg", mask)
|
||||
# # cv2.imshow('dilated_mask', cv2.hconcat([mask, dilated_mask]))
|
||||
# # cv2.waitKey(0)
|
||||
# # exit()
|
||||
#
|
||||
# # img = pad(img)
|
||||
# gray_img = pad(gray_img).astype(np.float32)
|
||||
# mask = pad(mask)
|
||||
#
|
||||
# # pad_mod = 16
|
||||
# import time
|
||||
# start = time.time()
|
||||
# y = erika_model(torch.from_numpy(gray_img[np.newaxis, np.newaxis, :, :]))
|
||||
# y = torch.clamp(y, 0, 255)
|
||||
# lines = y.cpu().numpy()
|
||||
# print(f"erika_model time: {time.time() - start}")
|
||||
#
|
||||
# cv2.imwrite('lines.png', lines[0][0])
|
||||
#
|
||||
# start = time.time()
|
||||
# masks = torch.from_numpy(mask[np.newaxis, np.newaxis, :, :])
|
||||
# masks = torch.where(masks > 0.5, torch.tensor(1.0), torch.tensor(0.0))
|
||||
# noise = torch.randn_like(masks)
|
||||
#
|
||||
# images = torch.from_numpy(norm(gray_img)[np.newaxis, np.newaxis, :, :])
|
||||
# lines = torch.from_numpy(norm(lines))
|
||||
#
|
||||
# outputs = manga_inpaintor_model(images, lines, masks, noise)
|
||||
# print(f"manga_inpaintor_model time: {time.time() - start}")
|
||||
#
|
||||
# outputs_merged = (outputs * masks) + (images * (1 - masks))
|
||||
# outputs_merged = outputs_merged * 127.5 + 127.5
|
||||
# outputs_merged = outputs_merged.permute(0, 2, 3, 1)[0].detach().cpu().numpy().astype(np.uint8)
|
||||
# cv2.imwrite(f'output_{name}', outputs_merged)
|
||||
|
||||
|
||||
MANGA_INPAINTOR_MODEL_URL = os.environ.get(
|
||||
"MANGA_INPAINTOR_MODEL_URL",
|
||||
"https://github.com/Sanster/models/releases/download/manga/manga_inpaintor.jit"
|
||||
)
|
||||
MANGA_LINE_MODEL_URL = os.environ.get(
|
||||
"MANGA_LINE_MODEL_URL",
|
||||
"https://github.com/Sanster/models/releases/download/manga/erika.jit"
|
||||
)
|
||||
|
||||
|
||||
class Manga(InpaintModel):
|
||||
pad_mod = 16
|
||||
|
||||
def init_model(self, device, **kwargs):
|
||||
self.inpaintor_model = load_jit_model(MANGA_INPAINTOR_MODEL_URL, device)
|
||||
self.line_model = load_jit_model(MANGA_LINE_MODEL_URL, device)
|
||||
|
||||
@staticmethod
|
||||
def is_downloaded() -> bool:
|
||||
model_paths = [
|
||||
get_cache_path_by_url(MANGA_INPAINTOR_MODEL_URL),
|
||||
get_cache_path_by_url(MANGA_LINE_MODEL_URL),
|
||||
]
|
||||
return all([os.path.exists(it) for it in model_paths])
|
||||
|
||||
def forward(self, image, mask, config: Config):
|
||||
"""
|
||||
image: [H, W, C] RGB
|
||||
mask: [H, W, 1]
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
gray_img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
||||
gray_img = torch.from_numpy(gray_img[np.newaxis, np.newaxis, :, :].astype(np.float32)).to(self.device)
|
||||
start = time.time()
|
||||
lines = self.line_model(gray_img)
|
||||
lines = torch.clamp(lines, 0, 255)
|
||||
logger.info(f"erika_model time: {time.time() - start}")
|
||||
|
||||
mask = torch.from_numpy(mask[np.newaxis, :, :, :]).to(self.device)
|
||||
mask = mask.permute(0, 3, 1, 2)
|
||||
mask = torch.where(mask > 0.5, torch.tensor(1.0), torch.tensor(0.0))
|
||||
noise = torch.randn_like(mask)
|
||||
|
||||
gray_img = gray_img / 255 * 2 - 1.0
|
||||
lines = lines / 255 * 2 - 1.0
|
||||
|
||||
start = time.time()
|
||||
inpainted_image = self.inpaintor_model(gray_img, lines, mask, noise)
|
||||
logger.info(f"image_inpaintor_model time: {time.time() - start}")
|
||||
|
||||
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
|
||||
cur_res = (cur_res * 127.5 + 127.5).astype(np.uint8)
|
||||
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_GRAY2BGR)
|
||||
return cur_res
|
||||
Reference in New Issue
Block a user