🎨 完整的 IOPaint 项目更新
## 主要更新 - ✨ 更新所有依赖到最新稳定版本 - 📝 添加详细的项目文档和模型推荐 - 🔧 配置 VSCode Cloud Studio 预览功能 - 🐛 修复 PyTorch API 弃用警告 ## 依赖更新 - diffusers: 0.27.2 → 0.35.2 - gradio: 4.21.0 → 5.46.0 - peft: 0.7.1 → 0.18.0 - Pillow: 9.5.0 → 11.3.0 - fastapi: 0.108.0 → 0.116.2 ## 新增文件 - CLAUDE.md - 项目架构和开发指南 - UPGRADE_NOTES.md - 详细的升级说明 - .vscode/preview.yml - 预览配置 - .vscode/LAUNCH_GUIDE.md - 启动指南 - .gitignore - 更新的忽略规则 ## 代码修复 - 修复 iopaint/model/ldm.py 中的 torch.cuda.amp.autocast() 弃用警告 ## 文档更新 - README.md - 添加模型推荐和使用指南 - 完整的项目源码(iopaint/) - Web 前端源码(web_app/) 🤖 Generated with Claude Code
This commit is contained in:
194
iopaint/model/controlnet.py
Normal file
194
iopaint/model/controlnet.py
Normal file
@@ -0,0 +1,194 @@
|
||||
import PIL.Image
|
||||
import cv2
|
||||
import torch
|
||||
from diffusers import ControlNetModel
|
||||
from loguru import logger
|
||||
from iopaint.schema import InpaintRequest, ModelType
|
||||
|
||||
from .base import DiffusionInpaintModel
|
||||
from .helper.controlnet_preprocess import (
|
||||
make_canny_control_image,
|
||||
make_openpose_control_image,
|
||||
make_depth_control_image,
|
||||
make_inpaint_control_image,
|
||||
)
|
||||
from .helper.cpu_text_encoder import CPUTextEncoderWrapper
|
||||
from .original_sd_configs import get_config_files
|
||||
from .utils import (
|
||||
get_scheduler,
|
||||
handle_from_pretrained_exceptions,
|
||||
get_torch_dtype,
|
||||
enable_low_mem,
|
||||
is_local_files_only,
|
||||
)
|
||||
|
||||
|
||||
class ControlNet(DiffusionInpaintModel):
|
||||
name = "controlnet"
|
||||
pad_mod = 8
|
||||
min_size = 512
|
||||
|
||||
@property
|
||||
def lcm_lora_id(self):
|
||||
if self.model_info.model_type in [
|
||||
ModelType.DIFFUSERS_SD,
|
||||
ModelType.DIFFUSERS_SD_INPAINT,
|
||||
]:
|
||||
return "latent-consistency/lcm-lora-sdv1-5"
|
||||
if self.model_info.model_type in [
|
||||
ModelType.DIFFUSERS_SDXL,
|
||||
ModelType.DIFFUSERS_SDXL_INPAINT,
|
||||
]:
|
||||
return "latent-consistency/lcm-lora-sdxl"
|
||||
raise NotImplementedError(f"Unsupported controlnet lcm model {self.model_info}")
|
||||
|
||||
def init_model(self, device: torch.device, **kwargs):
|
||||
model_info = kwargs["model_info"]
|
||||
controlnet_method = kwargs["controlnet_method"]
|
||||
|
||||
self.model_info = model_info
|
||||
self.controlnet_method = controlnet_method
|
||||
|
||||
model_kwargs = {
|
||||
**kwargs.get("pipe_components", {}),
|
||||
"local_files_only": is_local_files_only(**kwargs),
|
||||
}
|
||||
self.local_files_only = model_kwargs["local_files_only"]
|
||||
|
||||
disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
|
||||
"cpu_offload", False
|
||||
)
|
||||
if disable_nsfw_checker:
|
||||
logger.info("Disable Stable Diffusion Model NSFW checker")
|
||||
model_kwargs.update(
|
||||
dict(
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
)
|
||||
|
||||
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
|
||||
self.torch_dtype = torch_dtype
|
||||
|
||||
original_config_file_name = "v1"
|
||||
if model_info.model_type in [
|
||||
ModelType.DIFFUSERS_SD,
|
||||
ModelType.DIFFUSERS_SD_INPAINT,
|
||||
]:
|
||||
from diffusers import (
|
||||
StableDiffusionControlNetInpaintPipeline as PipeClass,
|
||||
)
|
||||
|
||||
original_config_file_name = "v1"
|
||||
|
||||
elif model_info.model_type in [
|
||||
ModelType.DIFFUSERS_SDXL,
|
||||
ModelType.DIFFUSERS_SDXL_INPAINT,
|
||||
]:
|
||||
from diffusers import (
|
||||
StableDiffusionXLControlNetInpaintPipeline as PipeClass,
|
||||
)
|
||||
|
||||
original_config_file_name = "xl"
|
||||
|
||||
controlnet = ControlNetModel.from_pretrained(
|
||||
pretrained_model_name_or_path=controlnet_method,
|
||||
local_files_only=model_kwargs["local_files_only"],
|
||||
torch_dtype=self.torch_dtype,
|
||||
)
|
||||
if model_info.is_single_file_diffusers:
|
||||
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
|
||||
model_kwargs["num_in_channels"] = 4
|
||||
else:
|
||||
model_kwargs["num_in_channels"] = 9
|
||||
|
||||
self.model = PipeClass.from_single_file(
|
||||
model_info.path,
|
||||
controlnet=controlnet,
|
||||
load_safety_checker=not disable_nsfw_checker,
|
||||
torch_dtype=torch_dtype,
|
||||
original_config_file=get_config_files()[original_config_file_name],
|
||||
**model_kwargs,
|
||||
)
|
||||
else:
|
||||
self.model = handle_from_pretrained_exceptions(
|
||||
PipeClass.from_pretrained,
|
||||
pretrained_model_name_or_path=model_info.path,
|
||||
controlnet=controlnet,
|
||||
variant="fp16",
|
||||
torch_dtype=torch_dtype,
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
enable_low_mem(self.model, kwargs.get("low_mem", False))
|
||||
|
||||
if kwargs.get("cpu_offload", False) and use_gpu:
|
||||
logger.info("Enable sequential cpu offload")
|
||||
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
||||
else:
|
||||
self.model = self.model.to(device)
|
||||
if kwargs["sd_cpu_textencoder"]:
|
||||
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
||||
self.model.text_encoder = CPUTextEncoderWrapper(
|
||||
self.model.text_encoder, torch_dtype
|
||||
)
|
||||
|
||||
self.callback = kwargs.pop("callback", None)
|
||||
|
||||
def switch_controlnet_method(self, new_method: str):
|
||||
self.controlnet_method = new_method
|
||||
controlnet = ControlNetModel.from_pretrained(
|
||||
new_method,
|
||||
local_files_only=self.local_files_only,
|
||||
torch_dtype=self.torch_dtype,
|
||||
).to(self.model.device)
|
||||
self.model.controlnet = controlnet
|
||||
|
||||
def _get_control_image(self, image, mask):
|
||||
if "canny" in self.controlnet_method:
|
||||
control_image = make_canny_control_image(image)
|
||||
elif "openpose" in self.controlnet_method:
|
||||
control_image = make_openpose_control_image(image)
|
||||
elif "depth" in self.controlnet_method:
|
||||
control_image = make_depth_control_image(image)
|
||||
elif "inpaint" in self.controlnet_method:
|
||||
control_image = make_inpaint_control_image(image, mask)
|
||||
else:
|
||||
raise NotImplementedError(f"{self.controlnet_method} not implemented")
|
||||
return control_image
|
||||
|
||||
def forward(self, image, mask, config: InpaintRequest):
|
||||
"""Input image and output image have same size
|
||||
image: [H, W, C] RGB
|
||||
mask: [H, W, 1] 255 means area to repaint
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
scheduler_config = self.model.scheduler.config
|
||||
scheduler = get_scheduler(config.sd_sampler, scheduler_config)
|
||||
self.model.scheduler = scheduler
|
||||
|
||||
img_h, img_w = image.shape[:2]
|
||||
control_image = self._get_control_image(image, mask)
|
||||
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
|
||||
image = PIL.Image.fromarray(image)
|
||||
|
||||
output = self.model(
|
||||
image=image,
|
||||
mask_image=mask_image,
|
||||
control_image=control_image,
|
||||
prompt=config.prompt,
|
||||
negative_prompt=config.negative_prompt,
|
||||
num_inference_steps=config.sd_steps,
|
||||
guidance_scale=config.sd_guidance_scale,
|
||||
output_type="np",
|
||||
callback_on_step_end=self.callback,
|
||||
height=img_h,
|
||||
width=img_w,
|
||||
generator=torch.manual_seed(config.sd_seed),
|
||||
controlnet_conditioning_scale=config.controlnet_conditioning_scale,
|
||||
).images[0]
|
||||
|
||||
output = (output * 255).round().astype("uint8")
|
||||
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
||||
return output
|
||||
Reference in New Issue
Block a user