🎨 完整的 IOPaint 项目更新
## 主要更新 - ✨ 更新所有依赖到最新稳定版本 - 📝 添加详细的项目文档和模型推荐 - 🔧 配置 VSCode Cloud Studio 预览功能 - 🐛 修复 PyTorch API 弃用警告 ## 依赖更新 - diffusers: 0.27.2 → 0.35.2 - gradio: 4.21.0 → 5.46.0 - peft: 0.7.1 → 0.18.0 - Pillow: 9.5.0 → 11.3.0 - fastapi: 0.108.0 → 0.116.2 ## 新增文件 - CLAUDE.md - 项目架构和开发指南 - UPGRADE_NOTES.md - 详细的升级说明 - .vscode/preview.yml - 预览配置 - .vscode/LAUNCH_GUIDE.md - 启动指南 - .gitignore - 更新的忽略规则 ## 代码修复 - 修复 iopaint/model/ldm.py 中的 torch.cuda.amp.autocast() 弃用警告 ## 文档更新 - README.md - 添加模型推荐和使用指南 - 完整的项目源码(iopaint/) - Web 前端源码(web_app/) 🤖 Generated with Claude Code
This commit is contained in:
0
iopaint/model/power_paint/__init__.py
Normal file
0
iopaint/model/power_paint/__init__.py
Normal file
1243
iopaint/model/power_paint/pipeline_powerpaint.py
Normal file
1243
iopaint/model/power_paint/pipeline_powerpaint.py
Normal file
File diff suppressed because it is too large
Load Diff
101
iopaint/model/power_paint/power_paint.py
Normal file
101
iopaint/model/power_paint/power_paint.py
Normal file
@@ -0,0 +1,101 @@
|
||||
from PIL import Image
|
||||
import PIL.Image
|
||||
import cv2
|
||||
import torch
|
||||
from loguru import logger
|
||||
|
||||
from ..base import DiffusionInpaintModel
|
||||
from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
|
||||
from ..utils import (
|
||||
handle_from_pretrained_exceptions,
|
||||
get_torch_dtype,
|
||||
enable_low_mem,
|
||||
is_local_files_only,
|
||||
)
|
||||
from iopaint.schema import InpaintRequest
|
||||
from .powerpaint_tokenizer import add_task_to_prompt
|
||||
from ...const import POWERPAINT_NAME
|
||||
|
||||
|
||||
class PowerPaint(DiffusionInpaintModel):
|
||||
name = POWERPAINT_NAME
|
||||
pad_mod = 8
|
||||
min_size = 512
|
||||
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
||||
|
||||
def init_model(self, device: torch.device, **kwargs):
|
||||
from .pipeline_powerpaint import StableDiffusionInpaintPipeline
|
||||
from .powerpaint_tokenizer import PowerPaintTokenizer
|
||||
|
||||
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
|
||||
model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
|
||||
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
|
||||
logger.info("Disable Stable Diffusion Model NSFW checker")
|
||||
model_kwargs.update(
|
||||
dict(
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
)
|
||||
|
||||
self.model = handle_from_pretrained_exceptions(
|
||||
StableDiffusionInpaintPipeline.from_pretrained,
|
||||
pretrained_model_name_or_path=self.name,
|
||||
variant="fp16",
|
||||
torch_dtype=torch_dtype,
|
||||
**model_kwargs,
|
||||
)
|
||||
self.model.tokenizer = PowerPaintTokenizer(self.model.tokenizer)
|
||||
|
||||
enable_low_mem(self.model, kwargs.get("low_mem", False))
|
||||
|
||||
if kwargs.get("cpu_offload", False) and use_gpu:
|
||||
logger.info("Enable sequential cpu offload")
|
||||
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
||||
else:
|
||||
self.model = self.model.to(device)
|
||||
if kwargs["sd_cpu_textencoder"]:
|
||||
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
||||
self.model.text_encoder = CPUTextEncoderWrapper(
|
||||
self.model.text_encoder, torch_dtype
|
||||
)
|
||||
|
||||
self.callback = kwargs.pop("callback", None)
|
||||
|
||||
def forward(self, image, mask, config: InpaintRequest):
|
||||
"""Input image and output image have same size
|
||||
image: [H, W, C] RGB
|
||||
mask: [H, W, 1] 255 means area to repaint
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
self.set_scheduler(config)
|
||||
|
||||
img_h, img_w = image.shape[:2]
|
||||
promptA, promptB, negative_promptA, negative_promptB = add_task_to_prompt(
|
||||
config.prompt, config.negative_prompt, config.powerpaint_task
|
||||
)
|
||||
|
||||
output = self.model(
|
||||
image=PIL.Image.fromarray(image),
|
||||
promptA=promptA,
|
||||
promptB=promptB,
|
||||
tradoff=config.fitting_degree,
|
||||
tradoff_nag=config.fitting_degree,
|
||||
negative_promptA=negative_promptA,
|
||||
negative_promptB=negative_promptB,
|
||||
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"),
|
||||
num_inference_steps=config.sd_steps,
|
||||
strength=config.sd_strength,
|
||||
guidance_scale=config.sd_guidance_scale,
|
||||
output_type="np",
|
||||
callback=self.callback,
|
||||
height=img_h,
|
||||
width=img_w,
|
||||
generator=torch.manual_seed(config.sd_seed),
|
||||
callback_steps=1,
|
||||
).images[0]
|
||||
|
||||
output = (output * 255).round().astype("uint8")
|
||||
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
||||
return output
|
||||
186
iopaint/model/power_paint/power_paint_v2.py
Normal file
186
iopaint/model/power_paint/power_paint_v2.py
Normal file
@@ -0,0 +1,186 @@
|
||||
from itertools import chain
|
||||
|
||||
import PIL.Image
|
||||
import cv2
|
||||
import torch
|
||||
from iopaint.model.original_sd_configs import get_config_files
|
||||
from loguru import logger
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
import numpy as np
|
||||
|
||||
from ..base import DiffusionInpaintModel
|
||||
from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
|
||||
from ..utils import (
|
||||
get_torch_dtype,
|
||||
enable_low_mem,
|
||||
is_local_files_only,
|
||||
handle_from_pretrained_exceptions,
|
||||
)
|
||||
from .powerpaint_tokenizer import task_to_prompt
|
||||
from iopaint.schema import InpaintRequest, ModelType
|
||||
from .v2.BrushNet_CA import BrushNetModel
|
||||
from .v2.unet_2d_condition import UNet2DConditionModel_forward
|
||||
from .v2.unet_2d_blocks import (
|
||||
CrossAttnDownBlock2D_forward,
|
||||
DownBlock2D_forward,
|
||||
CrossAttnUpBlock2D_forward,
|
||||
UpBlock2D_forward,
|
||||
)
|
||||
|
||||
|
||||
class PowerPaintV2(DiffusionInpaintModel):
|
||||
pad_mod = 8
|
||||
min_size = 512
|
||||
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
||||
hf_model_id = "Sanster/PowerPaint_v2"
|
||||
|
||||
def init_model(self, device: torch.device, **kwargs):
|
||||
from .v2.pipeline_PowerPaint_Brushnet_CA import (
|
||||
StableDiffusionPowerPaintBrushNetPipeline,
|
||||
)
|
||||
from .powerpaint_tokenizer import PowerPaintTokenizer
|
||||
|
||||
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
|
||||
model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
|
||||
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
|
||||
logger.info("Disable Stable Diffusion Model NSFW checker")
|
||||
model_kwargs.update(
|
||||
dict(
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
)
|
||||
|
||||
text_encoder_brushnet = CLIPTextModel.from_pretrained(
|
||||
self.hf_model_id,
|
||||
subfolder="text_encoder_brushnet",
|
||||
variant="fp16",
|
||||
torch_dtype=torch_dtype,
|
||||
local_files_only=model_kwargs["local_files_only"],
|
||||
)
|
||||
|
||||
brushnet = BrushNetModel.from_pretrained(
|
||||
self.hf_model_id,
|
||||
subfolder="PowerPaint_Brushnet",
|
||||
variant="fp16",
|
||||
torch_dtype=torch_dtype,
|
||||
local_files_only=model_kwargs["local_files_only"],
|
||||
)
|
||||
|
||||
if self.model_info.is_single_file_diffusers:
|
||||
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
|
||||
model_kwargs["num_in_channels"] = 4
|
||||
else:
|
||||
model_kwargs["num_in_channels"] = 9
|
||||
|
||||
pipe = StableDiffusionPowerPaintBrushNetPipeline.from_single_file(
|
||||
self.model_id_or_path,
|
||||
torch_dtype=torch_dtype,
|
||||
load_safety_checker=False,
|
||||
original_config_file=get_config_files()["v1"],
|
||||
brushnet=brushnet,
|
||||
text_encoder_brushnet=text_encoder_brushnet,
|
||||
**model_kwargs,
|
||||
)
|
||||
else:
|
||||
pipe = handle_from_pretrained_exceptions(
|
||||
StableDiffusionPowerPaintBrushNetPipeline.from_pretrained,
|
||||
pretrained_model_name_or_path=self.model_id_or_path,
|
||||
torch_dtype=torch_dtype,
|
||||
brushnet=brushnet,
|
||||
text_encoder_brushnet=text_encoder_brushnet,
|
||||
variant="fp16",
|
||||
**model_kwargs,
|
||||
)
|
||||
pipe.tokenizer = PowerPaintTokenizer(
|
||||
CLIPTokenizer.from_pretrained(self.hf_model_id, subfolder="tokenizer")
|
||||
)
|
||||
self.model = pipe
|
||||
|
||||
enable_low_mem(self.model, kwargs.get("low_mem", False))
|
||||
|
||||
if kwargs.get("cpu_offload", False) and use_gpu:
|
||||
logger.info("Enable sequential cpu offload")
|
||||
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
||||
else:
|
||||
self.model = self.model.to(device)
|
||||
if kwargs["sd_cpu_textencoder"]:
|
||||
logger.info("Run Stable Diffusion TextEncoder on CPU")
|
||||
self.model.text_encoder = CPUTextEncoderWrapper(
|
||||
self.model.text_encoder, torch_dtype
|
||||
)
|
||||
|
||||
self.callback = kwargs.pop("callback", None)
|
||||
|
||||
# Monkey patch the forward method of the UNet to use the brushnet_unet_forward method
|
||||
self.model.unet.forward = UNet2DConditionModel_forward.__get__(
|
||||
self.model.unet, self.model.unet.__class__
|
||||
)
|
||||
|
||||
# Monkey patch unet down_blocks to use CrossAttnDownBlock2D_forward
|
||||
for down_block in chain(
|
||||
self.model.unet.down_blocks, self.model.brushnet.down_blocks
|
||||
):
|
||||
if down_block.__class__.__name__ == "CrossAttnDownBlock2D":
|
||||
down_block.forward = CrossAttnDownBlock2D_forward.__get__(
|
||||
down_block, down_block.__class__
|
||||
)
|
||||
else:
|
||||
down_block.forward = DownBlock2D_forward.__get__(
|
||||
down_block, down_block.__class__
|
||||
)
|
||||
|
||||
for up_block in chain(self.model.unet.up_blocks, self.model.brushnet.up_blocks):
|
||||
if up_block.__class__.__name__ == "CrossAttnUpBlock2D":
|
||||
up_block.forward = CrossAttnUpBlock2D_forward.__get__(
|
||||
up_block, up_block.__class__
|
||||
)
|
||||
else:
|
||||
up_block.forward = UpBlock2D_forward.__get__(
|
||||
up_block, up_block.__class__
|
||||
)
|
||||
|
||||
def forward(self, image, mask, config: InpaintRequest):
|
||||
"""Input image and output image have same size
|
||||
image: [H, W, C] RGB
|
||||
mask: [H, W, 1] 255 means area to repaint
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
self.set_scheduler(config)
|
||||
|
||||
image = image * (1 - mask / 255.0)
|
||||
img_h, img_w = image.shape[:2]
|
||||
|
||||
image = PIL.Image.fromarray(image.astype(np.uint8))
|
||||
mask = PIL.Image.fromarray(mask[:, :, -1], mode="L").convert("RGB")
|
||||
|
||||
promptA, promptB, negative_promptA, negative_promptB = task_to_prompt(
|
||||
config.powerpaint_task
|
||||
)
|
||||
|
||||
output = self.model(
|
||||
image=image,
|
||||
mask=mask,
|
||||
promptA=promptA,
|
||||
promptB=promptB,
|
||||
promptU=config.prompt,
|
||||
tradoff=config.fitting_degree,
|
||||
tradoff_nag=config.fitting_degree,
|
||||
negative_promptA=negative_promptA,
|
||||
negative_promptB=negative_promptB,
|
||||
negative_promptU=config.negative_prompt,
|
||||
num_inference_steps=config.sd_steps,
|
||||
# strength=config.sd_strength,
|
||||
brushnet_conditioning_scale=1.0,
|
||||
guidance_scale=config.sd_guidance_scale,
|
||||
output_type="np",
|
||||
callback_on_step_end=self.callback,
|
||||
height=img_h,
|
||||
width=img_w,
|
||||
generator=torch.manual_seed(config.sd_seed),
|
||||
).images[0]
|
||||
|
||||
output = (output * 255).round().astype("uint8")
|
||||
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
||||
return output
|
||||
254
iopaint/model/power_paint/powerpaint_tokenizer.py
Normal file
254
iopaint/model/power_paint/powerpaint_tokenizer.py
Normal file
@@ -0,0 +1,254 @@
|
||||
import copy
|
||||
import random
|
||||
from typing import Any, List, Union
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
from iopaint.schema import PowerPaintTask
|
||||
|
||||
|
||||
def add_task_to_prompt(prompt, negative_prompt, task: PowerPaintTask):
|
||||
if task == PowerPaintTask.object_remove:
|
||||
promptA = prompt + " P_ctxt"
|
||||
promptB = prompt + " P_ctxt"
|
||||
negative_promptA = negative_prompt + " P_obj"
|
||||
negative_promptB = negative_prompt + " P_obj"
|
||||
elif task == PowerPaintTask.context_aware:
|
||||
promptA = prompt + " P_ctxt"
|
||||
promptB = prompt + " P_ctxt"
|
||||
negative_promptA = negative_prompt
|
||||
negative_promptB = negative_prompt
|
||||
elif task == PowerPaintTask.shape_guided:
|
||||
promptA = prompt + " P_shape"
|
||||
promptB = prompt + " P_ctxt"
|
||||
negative_promptA = negative_prompt
|
||||
negative_promptB = negative_prompt
|
||||
elif task == PowerPaintTask.outpainting:
|
||||
promptA = prompt + " P_ctxt"
|
||||
promptB = prompt + " P_ctxt"
|
||||
negative_promptA = negative_prompt + " P_obj"
|
||||
negative_promptB = negative_prompt + " P_obj"
|
||||
else:
|
||||
promptA = prompt + " P_obj"
|
||||
promptB = prompt + " P_obj"
|
||||
negative_promptA = negative_prompt
|
||||
negative_promptB = negative_prompt
|
||||
|
||||
return promptA, promptB, negative_promptA, negative_promptB
|
||||
|
||||
|
||||
def task_to_prompt(task: PowerPaintTask):
|
||||
promptA, promptB, negative_promptA, negative_promptB = add_task_to_prompt(
|
||||
"", "", task
|
||||
)
|
||||
return (
|
||||
promptA.strip(),
|
||||
promptB.strip(),
|
||||
negative_promptA.strip(),
|
||||
negative_promptB.strip(),
|
||||
)
|
||||
|
||||
|
||||
class PowerPaintTokenizer:
|
||||
def __init__(self, tokenizer: CLIPTokenizer):
|
||||
self.wrapped = tokenizer
|
||||
self.token_map = {}
|
||||
placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"]
|
||||
num_vec_per_token = 10
|
||||
for placeholder_token in placeholder_tokens:
|
||||
output = []
|
||||
for i in range(num_vec_per_token):
|
||||
ith_token = placeholder_token + f"_{i}"
|
||||
output.append(ith_token)
|
||||
self.token_map[placeholder_token] = output
|
||||
|
||||
def __getattr__(self, name: str) -> Any:
|
||||
if name == "wrapped":
|
||||
return super().__getattr__("wrapped")
|
||||
|
||||
try:
|
||||
return getattr(self.wrapped, name)
|
||||
except AttributeError:
|
||||
try:
|
||||
return super().__getattr__(name)
|
||||
except AttributeError:
|
||||
raise AttributeError(
|
||||
"'name' cannot be found in both "
|
||||
f"'{self.__class__.__name__}' and "
|
||||
f"'{self.__class__.__name__}.tokenizer'."
|
||||
)
|
||||
|
||||
def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs):
|
||||
"""Attempt to add tokens to the tokenizer.
|
||||
|
||||
Args:
|
||||
tokens (Union[str, List[str]]): The tokens to be added.
|
||||
"""
|
||||
num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs)
|
||||
assert num_added_tokens != 0, (
|
||||
f"The tokenizer already contains the token {tokens}. Please pass "
|
||||
"a different `placeholder_token` that is not already in the "
|
||||
"tokenizer."
|
||||
)
|
||||
|
||||
def get_token_info(self, token: str) -> dict:
|
||||
"""Get the information of a token, including its start and end index in
|
||||
the current tokenizer.
|
||||
|
||||
Args:
|
||||
token (str): The token to be queried.
|
||||
|
||||
Returns:
|
||||
dict: The information of the token, including its start and end
|
||||
index in current tokenizer.
|
||||
"""
|
||||
token_ids = self.__call__(token).input_ids
|
||||
start, end = token_ids[1], token_ids[-2] + 1
|
||||
return {"name": token, "start": start, "end": end}
|
||||
|
||||
def add_placeholder_token(
|
||||
self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs
|
||||
):
|
||||
"""Add placeholder tokens to the tokenizer.
|
||||
|
||||
Args:
|
||||
placeholder_token (str): The placeholder token to be added.
|
||||
num_vec_per_token (int, optional): The number of vectors of
|
||||
the added placeholder token.
|
||||
*args, **kwargs: The arguments for `self.wrapped.add_tokens`.
|
||||
"""
|
||||
output = []
|
||||
if num_vec_per_token == 1:
|
||||
self.try_adding_tokens(placeholder_token, *args, **kwargs)
|
||||
output.append(placeholder_token)
|
||||
else:
|
||||
output = []
|
||||
for i in range(num_vec_per_token):
|
||||
ith_token = placeholder_token + f"_{i}"
|
||||
self.try_adding_tokens(ith_token, *args, **kwargs)
|
||||
output.append(ith_token)
|
||||
|
||||
for token in self.token_map:
|
||||
if token in placeholder_token:
|
||||
raise ValueError(
|
||||
f"The tokenizer already has placeholder token {token} "
|
||||
f"that can get confused with {placeholder_token} "
|
||||
"keep placeholder tokens independent"
|
||||
)
|
||||
self.token_map[placeholder_token] = output
|
||||
|
||||
def replace_placeholder_tokens_in_text(
|
||||
self,
|
||||
text: Union[str, List[str]],
|
||||
vector_shuffle: bool = False,
|
||||
prop_tokens_to_load: float = 1.0,
|
||||
) -> Union[str, List[str]]:
|
||||
"""Replace the keywords in text with placeholder tokens. This function
|
||||
will be called in `self.__call__` and `self.encode`.
|
||||
|
||||
Args:
|
||||
text (Union[str, List[str]]): The text to be processed.
|
||||
vector_shuffle (bool, optional): Whether to shuffle the vectors.
|
||||
Defaults to False.
|
||||
prop_tokens_to_load (float, optional): The proportion of tokens to
|
||||
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0.
|
||||
|
||||
Returns:
|
||||
Union[str, List[str]]: The processed text.
|
||||
"""
|
||||
if isinstance(text, list):
|
||||
output = []
|
||||
for i in range(len(text)):
|
||||
output.append(
|
||||
self.replace_placeholder_tokens_in_text(
|
||||
text[i], vector_shuffle=vector_shuffle
|
||||
)
|
||||
)
|
||||
return output
|
||||
|
||||
for placeholder_token in self.token_map:
|
||||
if placeholder_token in text:
|
||||
tokens = self.token_map[placeholder_token]
|
||||
tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
|
||||
if vector_shuffle:
|
||||
tokens = copy.copy(tokens)
|
||||
random.shuffle(tokens)
|
||||
text = text.replace(placeholder_token, " ".join(tokens))
|
||||
return text
|
||||
|
||||
def replace_text_with_placeholder_tokens(
|
||||
self, text: Union[str, List[str]]
|
||||
) -> Union[str, List[str]]:
|
||||
"""Replace the placeholder tokens in text with the original keywords.
|
||||
This function will be called in `self.decode`.
|
||||
|
||||
Args:
|
||||
text (Union[str, List[str]]): The text to be processed.
|
||||
|
||||
Returns:
|
||||
Union[str, List[str]]: The processed text.
|
||||
"""
|
||||
if isinstance(text, list):
|
||||
output = []
|
||||
for i in range(len(text)):
|
||||
output.append(self.replace_text_with_placeholder_tokens(text[i]))
|
||||
return output
|
||||
|
||||
for placeholder_token, tokens in self.token_map.items():
|
||||
merged_tokens = " ".join(tokens)
|
||||
if merged_tokens in text:
|
||||
text = text.replace(merged_tokens, placeholder_token)
|
||||
return text
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
text: Union[str, List[str]],
|
||||
*args,
|
||||
vector_shuffle: bool = False,
|
||||
prop_tokens_to_load: float = 1.0,
|
||||
**kwargs,
|
||||
):
|
||||
"""The call function of the wrapper.
|
||||
|
||||
Args:
|
||||
text (Union[str, List[str]]): The text to be tokenized.
|
||||
vector_shuffle (bool, optional): Whether to shuffle the vectors.
|
||||
Defaults to False.
|
||||
prop_tokens_to_load (float, optional): The proportion of tokens to
|
||||
be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0
|
||||
*args, **kwargs: The arguments for `self.wrapped.__call__`.
|
||||
"""
|
||||
replaced_text = self.replace_placeholder_tokens_in_text(
|
||||
text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load
|
||||
)
|
||||
|
||||
return self.wrapped.__call__(replaced_text, *args, **kwargs)
|
||||
|
||||
def encode(self, text: Union[str, List[str]], *args, **kwargs):
|
||||
"""Encode the passed text to token index.
|
||||
|
||||
Args:
|
||||
text (Union[str, List[str]]): The text to be encode.
|
||||
*args, **kwargs: The arguments for `self.wrapped.__call__`.
|
||||
"""
|
||||
replaced_text = self.replace_placeholder_tokens_in_text(text)
|
||||
return self.wrapped(replaced_text, *args, **kwargs)
|
||||
|
||||
def decode(
|
||||
self, token_ids, return_raw: bool = False, *args, **kwargs
|
||||
) -> Union[str, List[str]]:
|
||||
"""Decode the token index to text.
|
||||
|
||||
Args:
|
||||
token_ids: The token index to be decoded.
|
||||
return_raw: Whether keep the placeholder token in the text.
|
||||
Defaults to False.
|
||||
*args, **kwargs: The arguments for `self.wrapped.decode`.
|
||||
|
||||
Returns:
|
||||
Union[str, List[str]]: The decoded text.
|
||||
"""
|
||||
text = self.wrapped.decode(token_ids, *args, **kwargs)
|
||||
if return_raw:
|
||||
return text
|
||||
replaced_text = self.replace_text_with_placeholder_tokens(text)
|
||||
return replaced_text
|
||||
1094
iopaint/model/power_paint/v2/BrushNet_CA.py
Normal file
1094
iopaint/model/power_paint/v2/BrushNet_CA.py
Normal file
File diff suppressed because it is too large
Load Diff
0
iopaint/model/power_paint/v2/__init__.py
Normal file
0
iopaint/model/power_paint/v2/__init__.py
Normal file
1690
iopaint/model/power_paint/v2/pipeline_PowerPaint_Brushnet_CA.py
Normal file
1690
iopaint/model/power_paint/v2/pipeline_PowerPaint_Brushnet_CA.py
Normal file
File diff suppressed because it is too large
Load Diff
342
iopaint/model/power_paint/v2/unet_2d_blocks.py
Normal file
342
iopaint/model/power_paint/v2/unet_2d_blocks.py
Normal file
@@ -0,0 +1,342 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from diffusers.utils import is_torch_version, logging
|
||||
from diffusers.utils.torch_utils import apply_freeu
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def CrossAttnDownBlock2D_forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
temb: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
additional_residuals: Optional[torch.FloatTensor] = None,
|
||||
down_block_add_samples: Optional[torch.FloatTensor] = None,
|
||||
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
||||
output_states = ()
|
||||
|
||||
lora_scale = (
|
||||
cross_attention_kwargs.get("scale", 1.0)
|
||||
if cross_attention_kwargs is not None
|
||||
else 1.0
|
||||
)
|
||||
|
||||
blocks = list(zip(self.resnets, self.attentions))
|
||||
|
||||
for i, (resnet, attn) in enumerate(blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = (
|
||||
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
)
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(resnet),
|
||||
hidden_states,
|
||||
temb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
hidden_states = attn(
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
attention_mask=attention_mask,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
||||
hidden_states = attn(
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
attention_mask=attention_mask,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
||||
if i == len(blocks) - 1 and additional_residuals is not None:
|
||||
hidden_states = hidden_states + additional_residuals
|
||||
|
||||
if down_block_add_samples is not None:
|
||||
hidden_states = hidden_states + down_block_add_samples.pop(0)
|
||||
|
||||
output_states = output_states + (hidden_states,)
|
||||
|
||||
if self.downsamplers is not None:
|
||||
for downsampler in self.downsamplers:
|
||||
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
||||
|
||||
if down_block_add_samples is not None:
|
||||
hidden_states = hidden_states + down_block_add_samples.pop(
|
||||
0
|
||||
) # todo: add before or after
|
||||
|
||||
output_states = output_states + (hidden_states,)
|
||||
|
||||
return hidden_states, output_states
|
||||
|
||||
|
||||
def DownBlock2D_forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
temb: Optional[torch.FloatTensor] = None,
|
||||
scale: float = 1.0,
|
||||
down_block_add_samples: Optional[torch.FloatTensor] = None,
|
||||
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
||||
output_states = ()
|
||||
|
||||
for resnet in self.resnets:
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
if is_torch_version(">=", "1.11.0"):
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(resnet),
|
||||
hidden_states,
|
||||
temb,
|
||||
use_reentrant=False,
|
||||
)
|
||||
else:
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(resnet), hidden_states, temb
|
||||
)
|
||||
else:
|
||||
hidden_states = resnet(hidden_states, temb, scale=scale)
|
||||
|
||||
if down_block_add_samples is not None:
|
||||
hidden_states = hidden_states + down_block_add_samples.pop(0)
|
||||
|
||||
output_states = output_states + (hidden_states,)
|
||||
|
||||
if self.downsamplers is not None:
|
||||
for downsampler in self.downsamplers:
|
||||
hidden_states = downsampler(hidden_states, scale=scale)
|
||||
|
||||
if down_block_add_samples is not None:
|
||||
hidden_states = hidden_states + down_block_add_samples.pop(
|
||||
0
|
||||
) # todo: add before or after
|
||||
|
||||
output_states = output_states + (hidden_states,)
|
||||
|
||||
return hidden_states, output_states
|
||||
|
||||
|
||||
def CrossAttnUpBlock2D_forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
||||
temb: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
upsample_size: Optional[int] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
return_res_samples: Optional[bool] = False,
|
||||
up_block_add_samples: Optional[torch.FloatTensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
lora_scale = (
|
||||
cross_attention_kwargs.get("scale", 1.0)
|
||||
if cross_attention_kwargs is not None
|
||||
else 1.0
|
||||
)
|
||||
is_freeu_enabled = (
|
||||
getattr(self, "s1", None)
|
||||
and getattr(self, "s2", None)
|
||||
and getattr(self, "b1", None)
|
||||
and getattr(self, "b2", None)
|
||||
)
|
||||
if return_res_samples:
|
||||
output_states = ()
|
||||
|
||||
for resnet, attn in zip(self.resnets, self.attentions):
|
||||
# pop res hidden states
|
||||
res_hidden_states = res_hidden_states_tuple[-1]
|
||||
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||||
|
||||
# FreeU: Only operate on the first two stages
|
||||
if is_freeu_enabled:
|
||||
hidden_states, res_hidden_states = apply_freeu(
|
||||
self.resolution_idx,
|
||||
hidden_states,
|
||||
res_hidden_states,
|
||||
s1=self.s1,
|
||||
s2=self.s2,
|
||||
b1=self.b1,
|
||||
b2=self.b2,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
||||
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = (
|
||||
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
)
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(resnet),
|
||||
hidden_states,
|
||||
temb,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
hidden_states = attn(
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
attention_mask=attention_mask,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
else:
|
||||
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
||||
hidden_states = attn(
|
||||
hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
attention_mask=attention_mask,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
if return_res_samples:
|
||||
output_states = output_states + (hidden_states,)
|
||||
if up_block_add_samples is not None:
|
||||
hidden_states = hidden_states + up_block_add_samples.pop(0)
|
||||
|
||||
if self.upsamplers is not None:
|
||||
for upsampler in self.upsamplers:
|
||||
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
|
||||
if return_res_samples:
|
||||
output_states = output_states + (hidden_states,)
|
||||
if up_block_add_samples is not None:
|
||||
hidden_states = hidden_states + up_block_add_samples.pop(0)
|
||||
|
||||
if return_res_samples:
|
||||
return hidden_states, output_states
|
||||
else:
|
||||
return hidden_states
|
||||
|
||||
|
||||
def UpBlock2D_forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
||||
temb: Optional[torch.FloatTensor] = None,
|
||||
upsample_size: Optional[int] = None,
|
||||
scale: float = 1.0,
|
||||
return_res_samples: Optional[bool] = False,
|
||||
up_block_add_samples: Optional[torch.FloatTensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
is_freeu_enabled = (
|
||||
getattr(self, "s1", None)
|
||||
and getattr(self, "s2", None)
|
||||
and getattr(self, "b1", None)
|
||||
and getattr(self, "b2", None)
|
||||
)
|
||||
if return_res_samples:
|
||||
output_states = ()
|
||||
|
||||
for resnet in self.resnets:
|
||||
# pop res hidden states
|
||||
res_hidden_states = res_hidden_states_tuple[-1]
|
||||
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||||
|
||||
# FreeU: Only operate on the first two stages
|
||||
if is_freeu_enabled:
|
||||
hidden_states, res_hidden_states = apply_freeu(
|
||||
self.resolution_idx,
|
||||
hidden_states,
|
||||
res_hidden_states,
|
||||
s1=self.s1,
|
||||
s2=self.s2,
|
||||
b1=self.b1,
|
||||
b2=self.b2,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
||||
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
if is_torch_version(">=", "1.11.0"):
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(resnet),
|
||||
hidden_states,
|
||||
temb,
|
||||
use_reentrant=False,
|
||||
)
|
||||
else:
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(resnet), hidden_states, temb
|
||||
)
|
||||
else:
|
||||
hidden_states = resnet(hidden_states, temb, scale=scale)
|
||||
|
||||
if return_res_samples:
|
||||
output_states = output_states + (hidden_states,)
|
||||
if up_block_add_samples is not None:
|
||||
hidden_states = hidden_states + up_block_add_samples.pop(
|
||||
0
|
||||
) # todo: add before or after
|
||||
|
||||
if self.upsamplers is not None:
|
||||
for upsampler in self.upsamplers:
|
||||
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
||||
|
||||
if return_res_samples:
|
||||
output_states = output_states + (hidden_states,)
|
||||
if up_block_add_samples is not None:
|
||||
hidden_states = hidden_states + up_block_add_samples.pop(
|
||||
0
|
||||
) # todo: add before or after
|
||||
|
||||
if return_res_samples:
|
||||
return hidden_states, output_states
|
||||
else:
|
||||
return hidden_states
|
||||
402
iopaint/model/power_paint/v2/unet_2d_condition.py
Normal file
402
iopaint/model/power_paint/v2/unet_2d_condition.py
Normal file
@@ -0,0 +1,402 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput
|
||||
from diffusers.utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
deprecate,
|
||||
logging,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def UNet2DConditionModel_forward(
|
||||
self,
|
||||
sample: torch.FloatTensor,
|
||||
timestep: Union[torch.Tensor, float, int],
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
class_labels: Optional[torch.Tensor] = None,
|
||||
timestep_cond: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
||||
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
||||
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
||||
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
down_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
|
||||
mid_block_add_sample: Optional[Tuple[torch.Tensor]] = None,
|
||||
up_block_add_samples: Optional[Tuple[torch.Tensor]] = None,
|
||||
) -> Union[UNet2DConditionOutput, Tuple]:
|
||||
r"""
|
||||
The [`UNet2DConditionModel`] forward method.
|
||||
|
||||
Args:
|
||||
sample (`torch.FloatTensor`):
|
||||
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
||||
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
||||
encoder_hidden_states (`torch.FloatTensor`):
|
||||
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
||||
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
||||
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
||||
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
||||
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
||||
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
||||
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
||||
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
||||
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
||||
negative values to the attention scores corresponding to "discard" tokens.
|
||||
cross_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
added_cond_kwargs: (`dict`, *optional*):
|
||||
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
||||
are passed along to the UNet blocks.
|
||||
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
||||
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
||||
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
||||
A tensor that if specified is added to the residual of the middle unet block.
|
||||
encoder_attention_mask (`torch.Tensor`):
|
||||
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
||||
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
||||
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
||||
tuple.
|
||||
cross_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
||||
added_cond_kwargs: (`dict`, *optional*):
|
||||
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
||||
are passed along to the UNet blocks.
|
||||
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
||||
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
||||
example from ControlNet side model(s)
|
||||
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
||||
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
||||
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
||||
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
||||
|
||||
Returns:
|
||||
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
||||
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
||||
a `tuple` is returned where the first element is the sample tensor.
|
||||
"""
|
||||
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
||||
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
||||
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
||||
# on the fly if necessary.
|
||||
default_overall_up_factor = 2**self.num_upsamplers
|
||||
|
||||
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
||||
forward_upsample_size = False
|
||||
upsample_size = None
|
||||
|
||||
for dim in sample.shape[-2:]:
|
||||
if dim % default_overall_up_factor != 0:
|
||||
# Forward upsample size to force interpolation output size.
|
||||
forward_upsample_size = True
|
||||
break
|
||||
|
||||
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
||||
# expects mask of shape:
|
||||
# [batch, key_tokens]
|
||||
# adds singleton query_tokens dimension:
|
||||
# [batch, 1, key_tokens]
|
||||
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
||||
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
||||
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
||||
if attention_mask is not None:
|
||||
# assume that mask is expressed as:
|
||||
# (1 = keep, 0 = discard)
|
||||
# convert mask into a bias that can be added to attention scores:
|
||||
# (keep = +0, discard = -10000.0)
|
||||
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
||||
attention_mask = attention_mask.unsqueeze(1)
|
||||
|
||||
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
||||
if encoder_attention_mask is not None:
|
||||
encoder_attention_mask = (
|
||||
1 - encoder_attention_mask.to(sample.dtype)
|
||||
) * -10000.0
|
||||
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
||||
|
||||
# 0. center input if necessary
|
||||
if self.config.center_input_sample:
|
||||
sample = 2 * sample - 1.0
|
||||
|
||||
# 1. time
|
||||
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
||||
emb = self.time_embedding(t_emb, timestep_cond)
|
||||
aug_emb = None
|
||||
|
||||
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
||||
if class_emb is not None:
|
||||
if self.config.class_embeddings_concat:
|
||||
emb = torch.cat([emb, class_emb], dim=-1)
|
||||
else:
|
||||
emb = emb + class_emb
|
||||
|
||||
aug_emb = self.get_aug_embed(
|
||||
emb=emb,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
)
|
||||
if self.config.addition_embed_type == "image_hint":
|
||||
aug_emb, hint = aug_emb
|
||||
sample = torch.cat([sample, hint], dim=1)
|
||||
|
||||
emb = emb + aug_emb if aug_emb is not None else emb
|
||||
|
||||
if self.time_embed_act is not None:
|
||||
emb = self.time_embed_act(emb)
|
||||
|
||||
encoder_hidden_states = self.process_encoder_hidden_states(
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
)
|
||||
|
||||
# 2. pre-process
|
||||
sample = self.conv_in(sample)
|
||||
|
||||
# 2.5 GLIGEN position net
|
||||
if (
|
||||
cross_attention_kwargs is not None
|
||||
and cross_attention_kwargs.get("gligen", None) is not None
|
||||
):
|
||||
cross_attention_kwargs = cross_attention_kwargs.copy()
|
||||
gligen_args = cross_attention_kwargs.pop("gligen")
|
||||
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
||||
|
||||
# 3. down
|
||||
lora_scale = (
|
||||
cross_attention_kwargs.get("scale", 1.0)
|
||||
if cross_attention_kwargs is not None
|
||||
else 1.0
|
||||
)
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
|
||||
is_controlnet = (
|
||||
mid_block_additional_residual is not None
|
||||
and down_block_additional_residuals is not None
|
||||
)
|
||||
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
||||
is_adapter = down_intrablock_additional_residuals is not None
|
||||
# maintain backward compatibility for legacy usage, where
|
||||
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
||||
# but can only use one or the other
|
||||
is_brushnet = (
|
||||
down_block_add_samples is not None
|
||||
and mid_block_add_sample is not None
|
||||
and up_block_add_samples is not None
|
||||
)
|
||||
if (
|
||||
not is_adapter
|
||||
and mid_block_additional_residual is None
|
||||
and down_block_additional_residuals is not None
|
||||
):
|
||||
deprecate(
|
||||
"T2I should not use down_block_additional_residuals",
|
||||
"1.3.0",
|
||||
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
||||
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
||||
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
||||
standard_warn=False,
|
||||
)
|
||||
down_intrablock_additional_residuals = down_block_additional_residuals
|
||||
is_adapter = True
|
||||
|
||||
down_block_res_samples = (sample,)
|
||||
|
||||
if is_brushnet:
|
||||
sample = sample + down_block_add_samples.pop(0)
|
||||
|
||||
for downsample_block in self.down_blocks:
|
||||
if (
|
||||
hasattr(downsample_block, "has_cross_attention")
|
||||
and downsample_block.has_cross_attention
|
||||
):
|
||||
# For t2i-adapter CrossAttnDownBlock2D
|
||||
additional_residuals = {}
|
||||
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
||||
additional_residuals["additional_residuals"] = (
|
||||
down_intrablock_additional_residuals.pop(0)
|
||||
)
|
||||
|
||||
if is_brushnet and len(down_block_add_samples) > 0:
|
||||
additional_residuals["down_block_add_samples"] = [
|
||||
down_block_add_samples.pop(0)
|
||||
for _ in range(
|
||||
len(downsample_block.resnets)
|
||||
+ (downsample_block.downsamplers != None)
|
||||
)
|
||||
]
|
||||
|
||||
sample, res_samples = downsample_block(
|
||||
hidden_states=sample,
|
||||
temb=emb,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
**additional_residuals,
|
||||
)
|
||||
else:
|
||||
additional_residuals = {}
|
||||
if is_brushnet and len(down_block_add_samples) > 0:
|
||||
additional_residuals["down_block_add_samples"] = [
|
||||
down_block_add_samples.pop(0)
|
||||
for _ in range(
|
||||
len(downsample_block.resnets)
|
||||
+ (downsample_block.downsamplers != None)
|
||||
)
|
||||
]
|
||||
|
||||
sample, res_samples = downsample_block(
|
||||
hidden_states=sample,
|
||||
temb=emb,
|
||||
scale=lora_scale,
|
||||
**additional_residuals,
|
||||
)
|
||||
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
||||
sample += down_intrablock_additional_residuals.pop(0)
|
||||
|
||||
down_block_res_samples += res_samples
|
||||
|
||||
if is_controlnet:
|
||||
new_down_block_res_samples = ()
|
||||
|
||||
for down_block_res_sample, down_block_additional_residual in zip(
|
||||
down_block_res_samples, down_block_additional_residuals
|
||||
):
|
||||
down_block_res_sample = (
|
||||
down_block_res_sample + down_block_additional_residual
|
||||
)
|
||||
new_down_block_res_samples = new_down_block_res_samples + (
|
||||
down_block_res_sample,
|
||||
)
|
||||
|
||||
down_block_res_samples = new_down_block_res_samples
|
||||
|
||||
# 4. mid
|
||||
if self.mid_block is not None:
|
||||
if (
|
||||
hasattr(self.mid_block, "has_cross_attention")
|
||||
and self.mid_block.has_cross_attention
|
||||
):
|
||||
sample = self.mid_block(
|
||||
sample,
|
||||
emb,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
else:
|
||||
sample = self.mid_block(sample, emb)
|
||||
|
||||
# To support T2I-Adapter-XL
|
||||
if (
|
||||
is_adapter
|
||||
and len(down_intrablock_additional_residuals) > 0
|
||||
and sample.shape == down_intrablock_additional_residuals[0].shape
|
||||
):
|
||||
sample += down_intrablock_additional_residuals.pop(0)
|
||||
|
||||
if is_controlnet:
|
||||
sample = sample + mid_block_additional_residual
|
||||
|
||||
if is_brushnet:
|
||||
sample = sample + mid_block_add_sample
|
||||
|
||||
# 5. up
|
||||
for i, upsample_block in enumerate(self.up_blocks):
|
||||
is_final_block = i == len(self.up_blocks) - 1
|
||||
|
||||
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
||||
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
||||
|
||||
# if we have not reached the final block and need to forward the
|
||||
# upsample size, we do it here
|
||||
if not is_final_block and forward_upsample_size:
|
||||
upsample_size = down_block_res_samples[-1].shape[2:]
|
||||
|
||||
if (
|
||||
hasattr(upsample_block, "has_cross_attention")
|
||||
and upsample_block.has_cross_attention
|
||||
):
|
||||
additional_residuals = {}
|
||||
if is_brushnet and len(up_block_add_samples) > 0:
|
||||
additional_residuals["up_block_add_samples"] = [
|
||||
up_block_add_samples.pop(0)
|
||||
for _ in range(
|
||||
len(upsample_block.resnets)
|
||||
+ (upsample_block.upsamplers != None)
|
||||
)
|
||||
]
|
||||
|
||||
sample = upsample_block(
|
||||
hidden_states=sample,
|
||||
temb=emb,
|
||||
res_hidden_states_tuple=res_samples,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
upsample_size=upsample_size,
|
||||
attention_mask=attention_mask,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
**additional_residuals,
|
||||
)
|
||||
else:
|
||||
additional_residuals = {}
|
||||
if is_brushnet and len(up_block_add_samples) > 0:
|
||||
additional_residuals["up_block_add_samples"] = [
|
||||
up_block_add_samples.pop(0)
|
||||
for _ in range(
|
||||
len(upsample_block.resnets)
|
||||
+ (upsample_block.upsamplers != None)
|
||||
)
|
||||
]
|
||||
|
||||
sample = upsample_block(
|
||||
hidden_states=sample,
|
||||
temb=emb,
|
||||
res_hidden_states_tuple=res_samples,
|
||||
upsample_size=upsample_size,
|
||||
scale=lora_scale,
|
||||
**additional_residuals,
|
||||
)
|
||||
|
||||
# 6. post-process
|
||||
if self.conv_norm_out:
|
||||
sample = self.conv_norm_out(sample)
|
||||
sample = self.conv_act(sample)
|
||||
sample = self.conv_out(sample)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (sample,)
|
||||
|
||||
return UNet2DConditionOutput(sample=sample)
|
||||
Reference in New Issue
Block a user