add DiffusionInpaintModel

This commit is contained in:
Qing
2023-01-27 20:59:22 +08:00
parent 96659f2aef
commit 205170e1e5
5 changed files with 55 additions and 122 deletions

View File

@@ -8,9 +8,8 @@ from diffusers import PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler, EulerD
EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from loguru import logger
from lama_cleaner.helper import resize_max_size
from lama_cleaner.model.base import InpaintModel
from lama_cleaner.model.utils import torch_gc
from lama_cleaner.model.base import DiffusionInpaintModel
from lama_cleaner.model.utils import torch_gc, set_seed
from lama_cleaner.schema import Config, SDSampler
@@ -28,7 +27,7 @@ class CPUTextEncoderWrapper:
return [self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0].to(input_device).to(self.torch_dtype)]
class SD(InpaintModel):
class SD(DiffusionInpaintModel):
pad_mod = 8
min_size = 512
@@ -73,25 +72,6 @@ class SD(InpaintModel):
self.callback = kwargs.pop("callback", None)
def _scaled_pad_forward(self, image, mask, config: Config):
longer_side_length = int(config.sd_scale * max(image.shape[:2]))
origin_size = image.shape[:2]
downsize_image = resize_max_size(image, size_limit=longer_side_length)
downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
logger.info(
f"Resize image to do sd inpainting: {image.shape} -> {downsize_image.shape}"
)
inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
# only paste masked area result
inpaint_result = cv2.resize(
inpaint_result,
(origin_size[1], origin_size[0]),
interpolation=cv2.INTER_CUBIC,
)
original_pixel_indices = mask < 127
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
return inpaint_result
def forward(self, image, mask, config: Config):
"""Input image and output image have same size
image: [H, W, C] RGB
@@ -118,11 +98,7 @@ class SD(InpaintModel):
self.model.scheduler = scheduler
seed = config.sd_seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(config.sd_seed)
if config.sd_mask_blur != 0:
k = 2 * config.sd_mask_blur + 1
@@ -147,24 +123,6 @@ class SD(InpaintModel):
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
@torch.no_grad()
def __call__(self, image, mask, config: Config):
"""
images: [H, W, C] RGB, not normalized
masks: [H, W]
return: BGR IMAGE
"""
# boxes = boxes_from_mask(mask)
if config.use_croper:
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
inpaint_result = image[:, :, ::-1]
inpaint_result[t:b, l:r, :] = crop_image
else:
inpaint_result = self._scaled_pad_forward(image, mask, config)
return inpaint_result
def forward_post_process(self, result, image, mask, config):
if config.sd_match_histograms:
result = self._match_histograms(result, image[:, :, ::-1], mask)