big update
This commit is contained in:
55
lama_cleaner/tests/test_model.py
Normal file
55
lama_cleaner/tests/test_model.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from lama_cleaner.model_manager import ModelManager
|
||||
from lama_cleaner.schema import Config, HDStrategy
|
||||
|
||||
current_dir = Path(__file__).parent.absolute().resolve()
|
||||
|
||||
|
||||
def get_data():
|
||||
img = cv2.imread(str(current_dir / 'image.png'))
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
||||
mask = cv2.imread(str(current_dir / 'mask.png'), cv2.IMREAD_GRAYSCALE)
|
||||
return img, mask
|
||||
|
||||
|
||||
def get_config(strategy):
|
||||
return Config(
|
||||
ldm_steps=1,
|
||||
hd_strategy=strategy,
|
||||
hd_strategy_crop_margin=32,
|
||||
hd_strategy_crop_trigger_size=200,
|
||||
hd_strategy_resize_limit=200,
|
||||
)
|
||||
|
||||
|
||||
def assert_equal(model, config, gt_name):
|
||||
img, mask = get_data()
|
||||
res = model(img, mask, config)
|
||||
# cv2.imwrite(gt_name, res,
|
||||
# [int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0])
|
||||
|
||||
"""
|
||||
Note that JPEG is lossy compression, so even if it is the highest quality 100,
|
||||
when the saved image is reloaded, a difference occurs with the original pixel value.
|
||||
If you want to save the original image as it is, save it as PNG or BMP.
|
||||
"""
|
||||
gt = cv2.imread(str(current_dir / gt_name), cv2.IMREAD_UNCHANGED)
|
||||
assert np.array_equal(res, gt)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('strategy', [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP])
|
||||
def test_lama(strategy):
|
||||
model = ModelManager(name='lama', device='cpu')
|
||||
assert_equal(model, get_config(strategy), f'lama_{strategy[0].upper() + strategy[1:]}_result.png')
|
||||
|
||||
|
||||
@pytest.mark.parametrize('strategy', [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP])
|
||||
def test_ldm(strategy):
|
||||
model = ModelManager(name='ldm', device='cpu')
|
||||
assert_equal(model, get_config(strategy), f'ldm_{strategy[0].upper() + strategy[1:]}_result.png')
|
||||
Reference in New Issue
Block a user