Merge pull request #622 from sun11/main

support brushnet sdxl model
This commit is contained in:
Qing
2025-03-17 15:56:16 +08:00
committed by GitHub
8 changed files with 1740 additions and 9 deletions

View File

@@ -30,6 +30,9 @@ DIFFUSION_MODELS = [
"Sanster/anything-4.0-inpainting",
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
"Fantasy-Studio/Paint-by-Example",
"RunDiffusion/Juggernaut-XI-v11",
"SG161222/RealVisXL_V5.0",
"eienmojiki/Anything-XL",
POWERPAINT_NAME,
ANYTEXT_NAME,
]
@@ -83,6 +86,10 @@ SDXL_CONTROLNET_CHOICES = [
"diffusers/controlnet-depth-sdxl-1.0-small",
]
SDXL_BRUSHNET_CHOICES = [
"Regulus0725/random_mask_brushnet_ckpt_sdxl_regulus_v1"
]
LOCAL_FILES_ONLY_HELP = """
When loading diffusion models, using local files only, not connect to HuggingFace server.
"""

View File

@@ -0,0 +1,181 @@
import PIL.Image
import cv2
import torch
from loguru import logger
import numpy as np
from ..base import DiffusionInpaintModel
from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
from ..original_sd_configs import get_config_files
from ..utils import (
handle_from_pretrained_exceptions,
get_torch_dtype,
enable_low_mem,
is_local_files_only,
)
from .brushnet import BrushNetModel
from .brushnet_unet_forward import brushnet_unet_forward
from .unet_2d_blocks import (
CrossAttnDownBlock2D_forward,
DownBlock2D_forward,
CrossAttnUpBlock2D_forward,
UpBlock2D_forward,
)
from ...schema import InpaintRequest, ModelType
from ...const import SDXL_BRUSHNET_CHOICES
class BrushNetXLWrapper(DiffusionInpaintModel):
name = "RunDiffusion/Juggernaut-XI-v11"
pad_mod = 8
min_size = 1024
model_id_or_path = "RunDiffusion/Juggernaut-XI-v11"
support_brushnet = True
support_lcm_lora = False
def init_model(self, device: torch.device, **kwargs):
from .pipeline_brushnet_sd_xl import StableDiffusionXLBrushNetPipeline
self.model_info = kwargs["model_info"]
self.brushnet_xl_method = SDXL_BRUSHNET_CHOICES[0]
# self.brushnet_xl_method = kwargs["brushnet_xl_method"]
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
self.torch_dtype = torch_dtype
model_kwargs = {
**kwargs.get("pipe_components", {}),
"local_files_only": is_local_files_only(**kwargs),
}
self.local_files_only = model_kwargs["local_files_only"]
disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
"cpu_offload", False
)
if disable_nsfw_checker:
logger.info("Disable Stable Diffusion Model NSFW checker")
model_kwargs.update(
dict(
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
)
logger.info(f"Loading BrushNet model from {self.brushnet_xl_method}")
brushnet = BrushNetModel.from_pretrained(
self.brushnet_xl_method, torch_dtype=torch_dtype
)
if self.model_info.is_single_file_diffusers:
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
model_kwargs["num_in_channels"] = 4
else:
model_kwargs["num_in_channels"] = 9
self.model = StableDiffusionXLBrushNetPipeline.from_single_file(
self.model_id_or_path,
torch_dtype=torch_dtype,
load_safety_checker=not disable_nsfw_checker,
original_config_file=get_config_files()["v1"],
brushnet=brushnet,
**model_kwargs,
)
else:
self.model = handle_from_pretrained_exceptions(
StableDiffusionXLBrushNetPipeline.from_pretrained,
pretrained_model_name_or_path=self.model_id_or_path,
variant="fp16",
torch_dtype=torch_dtype,
brushnet=brushnet,
**model_kwargs,
)
enable_low_mem(self.model, kwargs.get("low_mem", False))
if kwargs.get("cpu_offload", False) and use_gpu:
logger.info("Enable sequential cpu offload")
self.model.enable_sequential_cpu_offload(gpu_id=0)
else:
self.model = self.model.to(device)
if kwargs["sd_cpu_textencoder"]:
logger.info("Run Stable Diffusion TextEncoder on CPU")
self.model.text_encoder = CPUTextEncoderWrapper(
self.model.text_encoder, torch_dtype
)
self.callback = kwargs.pop("callback", None)
# Monkey patch the forward method of the UNet to use the brushnet_unet_forward method
self.model.unet.forward = brushnet_unet_forward.__get__(
self.model.unet, self.model.unet.__class__
)
for down_block in self.model.brushnet.down_blocks:
down_block.forward = DownBlock2D_forward.__get__(
down_block, down_block.__class__
)
for up_block in self.model.brushnet.up_blocks:
up_block.forward = UpBlock2D_forward.__get__(up_block, up_block.__class__)
# Monkey patch unet down_blocks to use CrossAttnDownBlock2D_forward
for down_block in self.model.unet.down_blocks:
if down_block.__class__.__name__ == "CrossAttnDownBlock2D":
down_block.forward = CrossAttnDownBlock2D_forward.__get__(
down_block, down_block.__class__
)
else:
down_block.forward = DownBlock2D_forward.__get__(
down_block, down_block.__class__
)
for up_block in self.model.unet.up_blocks:
if up_block.__class__.__name__ == "CrossAttnUpBlock2D":
up_block.forward = CrossAttnUpBlock2D_forward.__get__(
up_block, up_block.__class__
)
else:
up_block.forward = UpBlock2D_forward.__get__(
up_block, up_block.__class__
)
def switch_brushnet_method(self, new_method: str):
self.brushnet_method = new_method
brushnet_xl = BrushNetModel.from_pretrained(
new_method,
local_files_only=self.local_files_only,
torch_dtype=self.torch_dtype,
).to(self.model.device)
self.model.brushnet = brushnet_xl
def forward(self, image, mask, config: InpaintRequest):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
return: BGR IMAGE
"""
self.set_scheduler(config)
img_h, img_w = image.shape[:2]
normalized_mask = mask[:, :].astype("float32") / 255.0
image = image * (1 - normalized_mask)
image = image.astype(np.uint8)
output = self.model(
image=PIL.Image.fromarray(image),
prompt=config.prompt,
negative_prompt=config.negative_prompt,
mask=PIL.Image.fromarray(mask[:, :, -1], mode="L").convert("RGB"),
num_inference_steps=config.sd_steps,
# strength=config.sd_strength,
guidance_scale=config.sd_guidance_scale,
output_type="np",
callback_on_step_end=self.callback,
height=img_h,
width=img_w,
generator=torch.manual_seed(config.sd_seed),
brushnet_conditioning_scale=config.brushnet_conditioning_scale,
).images[0]
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output

File diff suppressed because it is too large Load Diff

View File

@@ -29,7 +29,7 @@ class SD(DiffusionInpaintModel):
**kwargs.get("pipe_components", {}),
"local_files_only": is_local_files_only(**kwargs),
}
disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
disable_nsfw_checker = kwargs.get("disable_nsfw", False) or kwargs.get(
"cpu_offload", False
)
if disable_nsfw_checker:
@@ -71,7 +71,7 @@ class SD(DiffusionInpaintModel):
self.model.enable_sequential_cpu_offload(gpu_id=0)
else:
self.model = self.model.to(device)
if kwargs["sd_cpu_textencoder"]:
if kwargs.get("sd_cpu_textencoder", False):
logger.info("Run Stable Diffusion TextEncoder on CPU")
self.model.text_encoder = CPUTextEncoderWrapper(
self.model.text_encoder, torch_dtype

View File

@@ -8,6 +8,7 @@ from iopaint.download import scan_models
from iopaint.helper import switch_mps_device
from iopaint.model import models, ControlNet, SD, SDXL
from iopaint.model.brushnet.brushnet_wrapper import BrushNetWrapper
from iopaint.model.brushnet.brushnet_xl_wrapper import BrushNetXLWrapper
from iopaint.model.power_paint.power_paint_v2 import PowerPaintV2
from iopaint.model.utils import torch_gc, is_local_files_only
from iopaint.schema import InpaintRequest, ModelInfo, ModelType
@@ -63,7 +64,10 @@ class ModelManager:
return ControlNet(device, **kwargs)
if model_info.support_brushnet and self.enable_brushnet:
if model_info.model_type == ModelType.DIFFUSERS_SD:
return BrushNetWrapper(device, **kwargs)
elif model_info.model_type == ModelType.DIFFUSERS_SDXL:
return BrushNetXLWrapper(device, **kwargs)
if model_info.support_powerpaint_v2 and self.enable_powerpaint_v2:
return PowerPaintV2(device, **kwargs)

View File

@@ -14,6 +14,7 @@ from iopaint.const import (
SD2_CONTROLNET_CHOICES,
SD_CONTROLNET_CHOICES,
SD_BRUSHNET_CHOICES,
SDXL_BRUSHNET_CHOICES
)
from pydantic import BaseModel, Field, computed_field, model_validator
@@ -70,6 +71,8 @@ class ModelInfo(BaseModel):
def brushnets(self) -> List[str]:
if self.model_type in [ModelType.DIFFUSERS_SD]:
return SD_BRUSHNET_CHOICES
if self.model_type in [ModelType.DIFFUSERS_SDXL]:
return SDXL_BRUSHNET_CHOICES
return []
@computed_field
@@ -117,6 +120,7 @@ class ModelInfo(BaseModel):
def support_brushnet(self) -> bool:
return self.model_type in [
ModelType.DIFFUSERS_SD,
ModelType.DIFFUSERS_SDXL,
]
@computed_field

View File

@@ -142,14 +142,14 @@ const DiffusionOptions = () => {
}}
/>
</RowContainer>
{/* <RowContainer>
<RowContainer>
<Slider
defaultValue={[100]}
className="w-[180px]"
min={1}
max={100}
step={1}
disabled={!settings.enableBrushNet || disable}
disabled={!settings.enableBrushNet}
value={[Math.floor(settings.brushnetConditioningScale * 100)]}
onValueChange={(vals) =>
updateSettings({ brushnetConditioningScale: vals[0] / 100 })
@@ -159,12 +159,12 @@ const DiffusionOptions = () => {
id="brushnet-weight"
className="w-[50px] rounded-full"
numberValue={settings.brushnetConditioningScale}
allowFloat={false}
allowFloat
onNumberValueChange={(val) => {
updateSettings({ brushnetConditioningScale: val })
}}
/>
</RowContainer> */}
</RowContainer>
<RowContainer>
<Select
@@ -240,7 +240,7 @@ const DiffusionOptions = () => {
className="w-[50px] rounded-full"
disabled={!settings.enableControlnet}
numberValue={settings.controlnetConditioningScale}
allowFloat={false}
allowFloat
onNumberValueChange={(val) => {
updateSettings({ controlnetConditioningScale: val })
}}

View File

@@ -61,7 +61,7 @@ const SidePanel = () => {
</SheetTrigger>
<SheetContent
side="right"
className="w-[286px] mt-[60px] outline-none pl-3 pr-1"
className="min-w-[286px] max-w-full mt-[60px] outline-none pl-3 pr-1"
onOpenAutoFocus={(event) => event.preventDefault()}
onPointerDownOutside={(event) => event.preventDefault()}
>