This commit is contained in:
Qing
2022-09-15 22:21:27 +08:00
parent 3ac6ee7f44
commit 32854d40da
52 changed files with 2258 additions and 205 deletions

View File

@@ -4,6 +4,7 @@ import io
import logging
import multiprocessing
import os
import random
import time
import imghdr
from pathlib import Path
@@ -41,7 +42,7 @@ from lama_cleaner.helper import (
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"]="True"
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
@@ -64,6 +65,10 @@ logging.getLogger("werkzeug").addFilter(NoFlaskwebgui())
app = Flask(__name__, static_folder=os.path.join(BUILD_DIR, "static"))
app.config["JSON_AS_ASCII"] = False
CORS(app, expose_headers=["Content-Disposition"])
# MAX_BUFFER_SIZE = 50 * 1000 * 1000 # 50 MB
# async_mode 优先级: eventlet/gevent_uwsgi/gevent/threading
# only threading works on macOS
# socketio = SocketIO(app, max_http_buffer_size=MAX_BUFFER_SIZE, async_mode='threading')
model: ModelManager = None
device = None
@@ -77,6 +82,11 @@ def get_image_ext(img_bytes):
return w
def diffuser_callback(step: int):
pass
# socketio.emit('diffusion_step', {'diffusion_step': step})
@app.route("/inpaint", methods=["POST"])
def process():
input = request.files
@@ -102,8 +112,24 @@ def process():
hd_strategy_crop_margin=form["hdStrategyCropMargin"],
hd_strategy_crop_trigger_size=form["hdStrategyCropTrigerSize"],
hd_strategy_resize_limit=form["hdStrategyResizeLimit"],
prompt=form['prompt'],
use_croper=form['useCroper'],
croper_x=form['croperX'],
croper_y=form['croperY'],
croper_height=form['croperHeight'],
croper_width=form['croperWidth'],
sd_strength=form["sdStrength"],
sd_steps=form["sdSteps"],
sd_guidance_scale=form["sdGuidanceScale"],
sd_sampler=form["sdSampler"],
sd_seed=form["sdSeed"],
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 9999999)
logger.info(f"Origin image shape: {original_shape}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape: {image.shape}")
@@ -184,7 +210,8 @@ def main(args):
device = torch.device(args.device)
input_image_path = args.input
model = ModelManager(name=args.model, device=device)
model = ModelManager(name=args.model, device=device, hf_access_token=args.hf_access_token,
callbacks=[diffuser_callback])
if args.gui:
app_width, app_height = args.gui_size
@@ -195,4 +222,5 @@ def main(args):
)
ui.run()
else:
# TODO: socketio
app.run(host=args.host, port=args.port, debug=args.debug)