This commit is contained in:
Qing
2023-12-24 15:32:27 +08:00
parent 0e5e16ba20
commit 371db2d771
31 changed files with 441 additions and 439 deletions

View File

@@ -41,7 +41,7 @@ class InpaintModel:
@staticmethod
@abc.abstractmethod
def is_downloaded() -> bool:
...
return False
@abc.abstractmethod
def forward(self, image, mask, config: Config):
@@ -67,6 +67,8 @@ class InpaintModel:
logger.info(f"final forward pad size: {pad_image.shape}")
image, mask = self.forward_pre_process(image, mask, config)
result = self.forward(pad_image, pad_mask, config)
result = result[0:origin_height, 0:origin_width, :]
@@ -77,6 +79,9 @@ class InpaintModel:
result = result * (mask / 255) + image[:, :, ::-1] * (1 - (mask / 255))
return result
def forward_pre_process(self, image, mask, config):
return image, mask
def forward_post_process(self, result, image, mask, config):
return result, image, mask
@@ -400,6 +405,13 @@ class DiffusionInpaintModel(InpaintModel):
scheduler = get_scheduler(sd_sampler, scheduler_config)
self.model.scheduler = scheduler
def forward_pre_process(self, image, mask, config):
if config.sd_mask_blur != 0:
k = 2 * config.sd_mask_blur + 1
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
return image, mask
def forward_post_process(self, result, image, mask, config):
if config.sd_match_histograms:
result = self._match_histograms(result, image[:, :, ::-1], mask)

View File

@@ -17,14 +17,6 @@ from lama_cleaner.model.helper.cpu_text_encoder import CPUTextEncoderWrapper
from lama_cleaner.model.utils import get_scheduler
from lama_cleaner.schema import Config, ModelInfo, ModelType
# 为了兼容性
controlnet_name_map = {
"control_v11p_sd15_canny": "lllyasviel/control_v11p_sd15_canny",
"control_v11p_sd15_openpose": "lllyasviel/control_v11p_sd15_openpose",
"control_v11p_sd15_inpaint": "lllyasviel/control_v11p_sd15_inpaint",
"control_v11f1p_sd15_depth": "lllyasviel/control_v11f1p_sd15_depth",
}
class ControlNet(DiffusionInpaintModel):
name = "controlnet"
@@ -49,9 +41,6 @@ class ControlNet(DiffusionInpaintModel):
fp16 = not kwargs.get("no_half", False)
model_info: ModelInfo = kwargs["model_info"]
sd_controlnet_method = kwargs["sd_controlnet_method"]
sd_controlnet_method = controlnet_name_map.get(
sd_controlnet_method, sd_controlnet_method
)
self.model_info = model_info
self.sd_controlnet_method = sd_controlnet_method
@@ -113,12 +102,6 @@ class ControlNet(DiffusionInpaintModel):
**model_kwargs,
)
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
self.model.enable_attention_slicing()
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
if kwargs.get("enable_xformers", False):
self.model.enable_xformers_memory_efficient_attention()
if kwargs.get("cpu_offload", False) and use_gpu:
logger.info("Enable sequential cpu offload")
self.model.enable_sequential_cpu_offload(gpu_id=0)
@@ -162,10 +145,6 @@ class ControlNet(DiffusionInpaintModel):
scheduler = get_scheduler(config.sd_sampler, scheduler_config)
self.model.scheduler = scheduler
if config.sd_mask_blur != 0:
k = 2 * config.sd_mask_blur + 1
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
img_h, img_w = image.shape[:2]
control_image = self._get_control_image(image, mask)
mask_image = PIL.Image.fromarray(mask[:, :, -1], mode="L")
@@ -190,8 +169,3 @@ class ControlNet(DiffusionInpaintModel):
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
@staticmethod
def is_downloaded() -> bool:
# model will be downloaded when app start, and can't switch in frontend settings
return True

View File

@@ -31,30 +31,15 @@ class InstructPix2Pix(DiffusionInpaintModel):
use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
self.model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix",
revision="fp16" if use_gpu and fp16 else "main",
torch_dtype=torch_dtype,
**model_kwargs
self.name, variant="fp16", torch_dtype=torch_dtype, **model_kwargs
)
self.model.enable_attention_slicing()
if kwargs.get("enable_xformers", False):
self.model.enable_xformers_memory_efficient_attention()
if kwargs.get("cpu_offload", False) and use_gpu:
logger.info("Enable sequential cpu offload")
self.model.enable_sequential_cpu_offload(gpu_id=0)
else:
self.model = self.model.to(device)
@staticmethod
def download():
from diffusers import StableDiffusionInstructPix2PixPipeline
StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix", revision="fp16"
)
def forward(self, image, mask, config: Config):
"""Input image and output image have same size
image: [H, W, C] RGB
@@ -76,8 +61,3 @@ class InstructPix2Pix(DiffusionInpaintModel):
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
@staticmethod
def is_downloaded() -> bool:
# model will be downloaded when app start, and can't switch in frontend settings
return True

View File

@@ -24,7 +24,7 @@ class Kandinsky(DiffusionInpaintModel):
}
self.model = AutoPipelineForInpainting.from_pretrained(
self.model_name, **model_kwargs
self.model_id_or_path, **model_kwargs
).to(device)
self.callback = kwargs.pop("callback", None)
@@ -40,9 +40,6 @@ class Kandinsky(DiffusionInpaintModel):
self.model.scheduler = scheduler
generator = torch.manual_seed(config.sd_seed)
if config.sd_mask_blur != 0:
k = 2 * config.sd_mask_blur + 1
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
mask = mask.astype(np.float32) / 255
img_h, img_w = image.shape[:2]
@@ -66,20 +63,7 @@ class Kandinsky(DiffusionInpaintModel):
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
@staticmethod
def is_downloaded() -> bool:
# model will be downloaded when app start, and can't switch in frontend settings
return True
class Kandinsky22(Kandinsky):
name = "kandinsky-community/kandinsky-2-2-decoder-inpaint"
model_name = "kandinsky-community/kandinsky-2-2-decoder-inpaint"
@staticmethod
def download():
from diffusers import AutoPipelineForInpainting
AutoPipelineForInpainting.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder-inpaint"
)
name = "kandinsky2.2"
model_id_or_path = "kandinsky-community/kandinsky-2-2-decoder-inpaint"

View File

@@ -31,10 +31,6 @@ class PaintByExample(DiffusionInpaintModel):
"Fantasy-Studio/Paint-by-Example", torch_dtype=torch_dtype, **model_kwargs
)
self.model.enable_attention_slicing()
if kwargs.get("enable_xformers", False):
self.model.enable_xformers_memory_efficient_attention()
# TODO: gpu_id
if kwargs.get("cpu_offload", False) and use_gpu:
self.model.image_encoder = self.model.image_encoder.to(device)
@@ -68,8 +64,3 @@ class PaintByExample(DiffusionInpaintModel):
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
@staticmethod
def is_downloaded() -> bool:
# model will be downloaded when app start, and can't switch in frontend settings
return True

View File

@@ -1,8 +1,5 @@
import os
import PIL.Image
import cv2
import numpy as np
import torch
from loguru import logger
@@ -49,23 +46,12 @@ class SD(DiffusionInpaintModel):
self.model = StableDiffusionInpaintPipeline.from_pretrained(
self.model_id_or_path,
revision="fp16"
if (
self.model_id_or_path in DIFFUSERS_MODEL_FP16_REVERSION
and use_gpu
and fp16
)
if self.model_id_or_path in DIFFUSERS_MODEL_FP16_REVERSION
else "main",
torch_dtype=torch_dtype,
use_auth_token=kwargs["hf_access_token"],
**model_kwargs,
)
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
self.model.enable_attention_slicing()
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
if kwargs.get("enable_xformers", False):
self.model.enable_xformers_memory_efficient_attention()
if kwargs.get("cpu_offload", False) and use_gpu:
# TODO: gpu_id
logger.info("Enable sequential cpu offload")
@@ -88,10 +74,6 @@ class SD(DiffusionInpaintModel):
"""
self.set_scheduler(config)
if config.sd_mask_blur != 0:
k = 2 * config.sd_mask_blur + 1
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
img_h, img_w = image.shape[:2]
output = self.model(
@@ -114,17 +96,6 @@ class SD(DiffusionInpaintModel):
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
@staticmethod
def is_downloaded() -> bool:
# model will be downloaded when app start, and can't switch in frontend settings
return True
@classmethod
def download(cls):
from diffusers import StableDiffusionInpaintPipeline
StableDiffusionInpaintPipeline.from_pretrained(cls.model_id_or_path)
class SD15(SD):
name = "sd1.5"

View File

@@ -45,16 +45,9 @@ class SDXL(DiffusionInpaintModel):
self.model_id_or_path,
revision="main",
torch_dtype=torch_dtype,
use_auth_token=kwargs["hf_access_token"],
vae=vae,
)
# https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing
self.model.enable_attention_slicing()
# https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention
if kwargs.get("enable_xformers", False):
self.model.enable_xformers_memory_efficient_attention()
if kwargs.get("cpu_offload", False) and use_gpu:
logger.info("Enable sequential cpu offload")
self.model.enable_sequential_cpu_offload(gpu_id=0)
@@ -65,14 +58,6 @@ class SDXL(DiffusionInpaintModel):
self.callback = kwargs.pop("callback", None)
@staticmethod
def download():
from diffusers import AutoPipelineForInpainting
AutoPipelineForInpainting.from_pretrained(
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
)
def forward(self, image, mask, config: Config):
"""Input image and output image have same size
image: [H, W, C] RGB
@@ -81,10 +66,6 @@ class SDXL(DiffusionInpaintModel):
"""
self.set_scheduler(config)
if config.sd_mask_blur != 0:
k = 2 * config.sd_mask_blur + 1
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis]
img_h, img_w = image.shape[:2]
output = self.model(
@@ -106,8 +87,3 @@ class SDXL(DiffusionInpaintModel):
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
@staticmethod
def is_downloaded() -> bool:
# model will be downloaded when app start, and can't switch in frontend settings
return True