add controlnet inpainting
This commit is contained in:
@@ -7,17 +7,35 @@ import numpy as np
|
||||
import collections
|
||||
from itertools import repeat
|
||||
|
||||
from diffusers import (
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
UniPCMultistepScheduler,
|
||||
)
|
||||
|
||||
from lama_cleaner.schema import SDSampler
|
||||
from torch import conv2d, conv_transpose2d
|
||||
|
||||
|
||||
def make_beta_schedule(device, schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
def make_beta_schedule(
|
||||
device, schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
|
||||
):
|
||||
if schedule == "linear":
|
||||
betas = (
|
||||
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
||||
torch.linspace(
|
||||
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
|
||||
)
|
||||
** 2
|
||||
)
|
||||
|
||||
elif schedule == "cosine":
|
||||
timesteps = (torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s).to(device)
|
||||
timesteps = (
|
||||
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
||||
).to(device)
|
||||
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||||
alphas = torch.cos(alphas).pow(2).to(device)
|
||||
alphas = alphas / alphas[0]
|
||||
@@ -25,9 +43,14 @@ def make_beta_schedule(device, schedule, n_timestep, linear_start=1e-4, linear_e
|
||||
betas = np.clip(betas, a_min=0, a_max=0.999)
|
||||
|
||||
elif schedule == "sqrt_linear":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||
betas = torch.linspace(
|
||||
linear_start, linear_end, n_timestep, dtype=torch.float64
|
||||
)
|
||||
elif schedule == "sqrt":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
||||
betas = (
|
||||
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||
** 0.5
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"schedule '{schedule}' unknown.")
|
||||
return betas.numpy()
|
||||
@@ -39,33 +62,47 @@ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||||
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||||
|
||||
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||||
sigmas = eta * np.sqrt(
|
||||
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)
|
||||
)
|
||||
if verbose:
|
||||
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||||
print(f'For the chosen value of eta, which is {eta}, '
|
||||
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||||
print(
|
||||
f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}"
|
||||
)
|
||||
print(
|
||||
f"For the chosen value of eta, which is {eta}, "
|
||||
f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
|
||||
)
|
||||
return sigmas, alphas, alphas_prev
|
||||
|
||||
|
||||
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||||
if ddim_discr_method == 'uniform':
|
||||
def make_ddim_timesteps(
|
||||
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True
|
||||
):
|
||||
if ddim_discr_method == "uniform":
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||
elif ddim_discr_method == 'quad':
|
||||
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
||||
elif ddim_discr_method == "quad":
|
||||
ddim_timesteps = (
|
||||
(np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2
|
||||
).astype(int)
|
||||
else:
|
||||
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||||
raise NotImplementedError(
|
||||
f'There is no ddim discretization method called "{ddim_discr_method}"'
|
||||
)
|
||||
|
||||
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
steps_out = ddim_timesteps + 1
|
||||
if verbose:
|
||||
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||||
print(f"Selected timesteps for ddim sampler: {steps_out}")
|
||||
return steps_out
|
||||
|
||||
|
||||
def noise_like(shape, device, repeat=False):
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
|
||||
shape[0], *((1,) * (len(shape) - 1))
|
||||
)
|
||||
noise = lambda: torch.randn(shape, device=device)
|
||||
return repeat_noise() if repeat else noise()
|
||||
|
||||
@@ -81,7 +118,9 @@ def timestep_embedding(device, timesteps, dim, max_period=10000, repeat_only=Fal
|
||||
"""
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||
-math.log(max_period)
|
||||
* torch.arange(start=0, end=half, dtype=torch.float32)
|
||||
/ half
|
||||
).to(device=device)
|
||||
|
||||
args = timesteps[:, None].float() * freqs[None]
|
||||
@@ -115,9 +154,8 @@ class EasyDict(dict):
|
||||
del self[name]
|
||||
|
||||
|
||||
def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None):
|
||||
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops.
|
||||
"""
|
||||
def _bias_act_ref(x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None):
|
||||
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops."""
|
||||
assert isinstance(x, torch.Tensor)
|
||||
assert clamp is None or clamp >= 0
|
||||
spec = activation_funcs[act]
|
||||
@@ -147,7 +185,9 @@ def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=N
|
||||
return x
|
||||
|
||||
|
||||
def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None, impl='ref'):
|
||||
def bias_act(
|
||||
x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None, impl="ref"
|
||||
):
|
||||
r"""Fused bias and activation function.
|
||||
|
||||
Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
|
||||
@@ -178,8 +218,10 @@ def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None,
|
||||
Tensor of the same shape and datatype as `x`.
|
||||
"""
|
||||
assert isinstance(x, torch.Tensor)
|
||||
assert impl in ['ref', 'cuda']
|
||||
return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp)
|
||||
assert impl in ["ref", "cuda"]
|
||||
return _bias_act_ref(
|
||||
x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp
|
||||
)
|
||||
|
||||
|
||||
def _get_filter_size(f):
|
||||
@@ -223,7 +265,14 @@ def _parse_padding(padding):
|
||||
return padx0, padx1, pady0, pady1
|
||||
|
||||
|
||||
def setup_filter(f, device=torch.device('cpu'), normalize=True, flip_filter=False, gain=1, separable=None):
|
||||
def setup_filter(
|
||||
f,
|
||||
device=torch.device("cpu"),
|
||||
normalize=True,
|
||||
flip_filter=False,
|
||||
gain=1,
|
||||
separable=None,
|
||||
):
|
||||
r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`.
|
||||
|
||||
Args:
|
||||
@@ -255,7 +304,7 @@ def setup_filter(f, device=torch.device('cpu'), normalize=True, flip_filter=Fals
|
||||
|
||||
# Separable?
|
||||
if separable is None:
|
||||
separable = (f.ndim == 1 and f.numel() >= 8)
|
||||
separable = f.ndim == 1 and f.numel() >= 8
|
||||
if f.ndim == 1 and not separable:
|
||||
f = f.ger(f)
|
||||
assert f.ndim == (1 if separable else 2)
|
||||
@@ -282,27 +331,82 @@ def _ntuple(n):
|
||||
to_2tuple = _ntuple(2)
|
||||
|
||||
activation_funcs = {
|
||||
'linear': EasyDict(func=lambda x, **_: x, def_alpha=0, def_gain=1, cuda_idx=1, ref='', has_2nd_grad=False),
|
||||
'relu': EasyDict(func=lambda x, **_: torch.nn.functional.relu(x), def_alpha=0, def_gain=np.sqrt(2), cuda_idx=2,
|
||||
ref='y', has_2nd_grad=False),
|
||||
'lrelu': EasyDict(func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), def_alpha=0.2,
|
||||
def_gain=np.sqrt(2), cuda_idx=3, ref='y', has_2nd_grad=False),
|
||||
'tanh': EasyDict(func=lambda x, **_: torch.tanh(x), def_alpha=0, def_gain=1, cuda_idx=4, ref='y',
|
||||
has_2nd_grad=True),
|
||||
'sigmoid': EasyDict(func=lambda x, **_: torch.sigmoid(x), def_alpha=0, def_gain=1, cuda_idx=5, ref='y',
|
||||
has_2nd_grad=True),
|
||||
'elu': EasyDict(func=lambda x, **_: torch.nn.functional.elu(x), def_alpha=0, def_gain=1, cuda_idx=6, ref='y',
|
||||
has_2nd_grad=True),
|
||||
'selu': EasyDict(func=lambda x, **_: torch.nn.functional.selu(x), def_alpha=0, def_gain=1, cuda_idx=7, ref='y',
|
||||
has_2nd_grad=True),
|
||||
'softplus': EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x), def_alpha=0, def_gain=1, cuda_idx=8,
|
||||
ref='y', has_2nd_grad=True),
|
||||
'swish': EasyDict(func=lambda x, **_: torch.sigmoid(x) * x, def_alpha=0, def_gain=np.sqrt(2), cuda_idx=9, ref='x',
|
||||
has_2nd_grad=True),
|
||||
"linear": EasyDict(
|
||||
func=lambda x, **_: x,
|
||||
def_alpha=0,
|
||||
def_gain=1,
|
||||
cuda_idx=1,
|
||||
ref="",
|
||||
has_2nd_grad=False,
|
||||
),
|
||||
"relu": EasyDict(
|
||||
func=lambda x, **_: torch.nn.functional.relu(x),
|
||||
def_alpha=0,
|
||||
def_gain=np.sqrt(2),
|
||||
cuda_idx=2,
|
||||
ref="y",
|
||||
has_2nd_grad=False,
|
||||
),
|
||||
"lrelu": EasyDict(
|
||||
func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha),
|
||||
def_alpha=0.2,
|
||||
def_gain=np.sqrt(2),
|
||||
cuda_idx=3,
|
||||
ref="y",
|
||||
has_2nd_grad=False,
|
||||
),
|
||||
"tanh": EasyDict(
|
||||
func=lambda x, **_: torch.tanh(x),
|
||||
def_alpha=0,
|
||||
def_gain=1,
|
||||
cuda_idx=4,
|
||||
ref="y",
|
||||
has_2nd_grad=True,
|
||||
),
|
||||
"sigmoid": EasyDict(
|
||||
func=lambda x, **_: torch.sigmoid(x),
|
||||
def_alpha=0,
|
||||
def_gain=1,
|
||||
cuda_idx=5,
|
||||
ref="y",
|
||||
has_2nd_grad=True,
|
||||
),
|
||||
"elu": EasyDict(
|
||||
func=lambda x, **_: torch.nn.functional.elu(x),
|
||||
def_alpha=0,
|
||||
def_gain=1,
|
||||
cuda_idx=6,
|
||||
ref="y",
|
||||
has_2nd_grad=True,
|
||||
),
|
||||
"selu": EasyDict(
|
||||
func=lambda x, **_: torch.nn.functional.selu(x),
|
||||
def_alpha=0,
|
||||
def_gain=1,
|
||||
cuda_idx=7,
|
||||
ref="y",
|
||||
has_2nd_grad=True,
|
||||
),
|
||||
"softplus": EasyDict(
|
||||
func=lambda x, **_: torch.nn.functional.softplus(x),
|
||||
def_alpha=0,
|
||||
def_gain=1,
|
||||
cuda_idx=8,
|
||||
ref="y",
|
||||
has_2nd_grad=True,
|
||||
),
|
||||
"swish": EasyDict(
|
||||
func=lambda x, **_: torch.sigmoid(x) * x,
|
||||
def_alpha=0,
|
||||
def_gain=np.sqrt(2),
|
||||
cuda_idx=9,
|
||||
ref="x",
|
||||
has_2nd_grad=True,
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
||||
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"):
|
||||
r"""Pad, upsample, filter, and downsample a batch of 2D images.
|
||||
|
||||
Performs the following sequence of operations for each channel:
|
||||
@@ -344,12 +448,13 @@ def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cu
|
||||
"""
|
||||
# assert isinstance(x, torch.Tensor)
|
||||
# assert impl in ['ref', 'cuda']
|
||||
return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain)
|
||||
return _upfirdn2d_ref(
|
||||
x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain
|
||||
)
|
||||
|
||||
|
||||
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
|
||||
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.
|
||||
"""
|
||||
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops."""
|
||||
# Validate arguments.
|
||||
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
||||
if f is None:
|
||||
@@ -372,8 +477,15 @@ def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
|
||||
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
|
||||
|
||||
# Pad or crop.
|
||||
x = torch.nn.functional.pad(x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)])
|
||||
x = x[:, :, max(-pady0, 0): x.shape[2] - max(-pady1, 0), max(-padx0, 0): x.shape[3] - max(-padx1, 0)]
|
||||
x = torch.nn.functional.pad(
|
||||
x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)]
|
||||
)
|
||||
x = x[
|
||||
:,
|
||||
:,
|
||||
max(-pady0, 0) : x.shape[2] - max(-pady1, 0),
|
||||
max(-padx0, 0) : x.shape[3] - max(-padx1, 0),
|
||||
]
|
||||
|
||||
# Setup filter.
|
||||
f = f * (gain ** (f.ndim / 2))
|
||||
@@ -394,7 +506,7 @@ def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
|
||||
return x
|
||||
|
||||
|
||||
def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
||||
def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl="cuda"):
|
||||
r"""Downsample a batch of 2D images using the given 2D FIR filter.
|
||||
|
||||
By default, the result is padded so that its shape is a fraction of the input.
|
||||
@@ -431,10 +543,12 @@ def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl='cuda'
|
||||
pady0 + (fh - downy + 1) // 2,
|
||||
pady1 + (fh - downy) // 2,
|
||||
]
|
||||
return upfirdn2d(x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl)
|
||||
return upfirdn2d(
|
||||
x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl
|
||||
)
|
||||
|
||||
|
||||
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
||||
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl="cuda"):
|
||||
r"""Upsample a batch of 2D images using the given 2D FIR filter.
|
||||
|
||||
By default, the result is padded so that its shape is a multiple of the input.
|
||||
@@ -471,7 +585,15 @@ def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
||||
pady0 + (fh + upy - 1) // 2,
|
||||
pady1 + (fh - upy) // 2,
|
||||
]
|
||||
return upfirdn2d(x, f, up=up, padding=p, flip_filter=flip_filter, gain=gain * upx * upy, impl=impl)
|
||||
return upfirdn2d(
|
||||
x,
|
||||
f,
|
||||
up=up,
|
||||
padding=p,
|
||||
flip_filter=flip_filter,
|
||||
gain=gain * upx * upy,
|
||||
impl=impl,
|
||||
)
|
||||
|
||||
|
||||
class MinibatchStdLayer(torch.nn.Module):
|
||||
@@ -482,13 +604,17 @@ class MinibatchStdLayer(torch.nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
N, C, H, W = x.shape
|
||||
G = torch.min(torch.as_tensor(self.group_size),
|
||||
torch.as_tensor(N)) if self.group_size is not None else N
|
||||
G = (
|
||||
torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N))
|
||||
if self.group_size is not None
|
||||
else N
|
||||
)
|
||||
F = self.num_channels
|
||||
c = C // F
|
||||
|
||||
y = x.reshape(G, -1, F, c, H,
|
||||
W) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c.
|
||||
y = x.reshape(
|
||||
G, -1, F, c, H, W
|
||||
) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c.
|
||||
y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group.
|
||||
y = y.square().mean(dim=0) # [nFcHW] Calc variance over group.
|
||||
y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group.
|
||||
@@ -500,17 +626,24 @@ class MinibatchStdLayer(torch.nn.Module):
|
||||
|
||||
|
||||
class FullyConnectedLayer(torch.nn.Module):
|
||||
def __init__(self,
|
||||
in_features, # Number of input features.
|
||||
out_features, # Number of output features.
|
||||
bias=True, # Apply additive bias before the activation function?
|
||||
activation='linear', # Activation function: 'relu', 'lrelu', etc.
|
||||
lr_multiplier=1, # Learning rate multiplier.
|
||||
bias_init=0, # Initial value for the additive bias.
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
in_features, # Number of input features.
|
||||
out_features, # Number of output features.
|
||||
bias=True, # Apply additive bias before the activation function?
|
||||
activation="linear", # Activation function: 'relu', 'lrelu', etc.
|
||||
lr_multiplier=1, # Learning rate multiplier.
|
||||
bias_init=0, # Initial value for the additive bias.
|
||||
):
|
||||
super().__init__()
|
||||
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier)
|
||||
self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None
|
||||
self.weight = torch.nn.Parameter(
|
||||
torch.randn([out_features, in_features]) / lr_multiplier
|
||||
)
|
||||
self.bias = (
|
||||
torch.nn.Parameter(torch.full([out_features], np.float32(bias_init)))
|
||||
if bias
|
||||
else None
|
||||
)
|
||||
self.activation = activation
|
||||
|
||||
self.weight_gain = lr_multiplier / np.sqrt(in_features)
|
||||
@@ -522,7 +655,7 @@ class FullyConnectedLayer(torch.nn.Module):
|
||||
if b is not None and self.bias_gain != 1:
|
||||
b = b * self.bias_gain
|
||||
|
||||
if self.activation == 'linear' and b is not None:
|
||||
if self.activation == "linear" and b is not None:
|
||||
# out = torch.addmm(b.unsqueeze(0), x, w.t())
|
||||
x = x.matmul(w.t())
|
||||
out = x + b.reshape([-1 if i == x.ndim - 1 else 1 for i in range(x.ndim)])
|
||||
@@ -532,22 +665,33 @@ class FullyConnectedLayer(torch.nn.Module):
|
||||
return out
|
||||
|
||||
|
||||
def _conv2d_wrapper(x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True):
|
||||
"""Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations.
|
||||
"""
|
||||
def _conv2d_wrapper(
|
||||
x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True
|
||||
):
|
||||
"""Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations."""
|
||||
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
|
||||
|
||||
# Flip weight if requested.
|
||||
if not flip_weight: # conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False).
|
||||
if (
|
||||
not flip_weight
|
||||
): # conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False).
|
||||
w = w.flip([2, 3])
|
||||
|
||||
# Workaround performance pitfall in cuDNN 8.0.5, triggered when using
|
||||
# 1x1 kernel + memory_format=channels_last + less than 64 channels.
|
||||
if kw == 1 and kh == 1 and stride == 1 and padding in [0, [0, 0], (0, 0)] and not transpose:
|
||||
if (
|
||||
kw == 1
|
||||
and kh == 1
|
||||
and stride == 1
|
||||
and padding in [0, [0, 0], (0, 0)]
|
||||
and not transpose
|
||||
):
|
||||
if x.stride()[1] == 1 and min(out_channels, in_channels_per_group) < 64:
|
||||
if out_channels <= 4 and groups == 1:
|
||||
in_shape = x.shape
|
||||
x = w.squeeze(3).squeeze(2) @ x.reshape([in_shape[0], in_channels_per_group, -1])
|
||||
x = w.squeeze(3).squeeze(2) @ x.reshape(
|
||||
[in_shape[0], in_channels_per_group, -1]
|
||||
)
|
||||
x = x.reshape([in_shape[0], out_channels, in_shape[2], in_shape[3]])
|
||||
else:
|
||||
x = x.to(memory_format=torch.contiguous_format)
|
||||
@@ -560,7 +704,9 @@ def _conv2d_wrapper(x, w, stride=1, padding=0, groups=1, transpose=False, flip_w
|
||||
return op(x, w, stride=stride, padding=padding, groups=groups)
|
||||
|
||||
|
||||
def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False):
|
||||
def conv2d_resample(
|
||||
x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False
|
||||
):
|
||||
r"""2D convolution with optional up/downsampling.
|
||||
|
||||
Padding is performed only once at the beginning, not between the operations.
|
||||
@@ -587,7 +733,9 @@ def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight
|
||||
# Validate arguments.
|
||||
assert isinstance(x, torch.Tensor) and (x.ndim == 4)
|
||||
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
|
||||
assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32)
|
||||
assert f is None or (
|
||||
isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32
|
||||
)
|
||||
assert isinstance(up, int) and (up >= 1)
|
||||
assert isinstance(down, int) and (down >= 1)
|
||||
# assert isinstance(groups, int) and (groups >= 1), f"!!!!!! groups: {groups} isinstance(groups, int) {isinstance(groups, int)} {type(groups)}"
|
||||
@@ -610,20 +758,31 @@ def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight
|
||||
|
||||
# Fast path: 1x1 convolution with downsampling only => downsample first, then convolve.
|
||||
if kw == 1 and kh == 1 and (down > 1 and up == 1):
|
||||
x = upfirdn2d(x=x, f=f, down=down, padding=[px0, px1, py0, py1], flip_filter=flip_filter)
|
||||
x = upfirdn2d(
|
||||
x=x, f=f, down=down, padding=[px0, px1, py0, py1], flip_filter=flip_filter
|
||||
)
|
||||
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
|
||||
return x
|
||||
|
||||
# Fast path: 1x1 convolution with upsampling only => convolve first, then upsample.
|
||||
if kw == 1 and kh == 1 and (up > 1 and down == 1):
|
||||
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
|
||||
x = upfirdn2d(x=x, f=f, up=up, padding=[px0, px1, py0, py1], gain=up ** 2, flip_filter=flip_filter)
|
||||
x = upfirdn2d(
|
||||
x=x,
|
||||
f=f,
|
||||
up=up,
|
||||
padding=[px0, px1, py0, py1],
|
||||
gain=up**2,
|
||||
flip_filter=flip_filter,
|
||||
)
|
||||
return x
|
||||
|
||||
# Fast path: downsampling only => use strided convolution.
|
||||
if down > 1 and up == 1:
|
||||
x = upfirdn2d(x=x, f=f, padding=[px0, px1, py0, py1], flip_filter=flip_filter)
|
||||
x = _conv2d_wrapper(x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight)
|
||||
x = _conv2d_wrapper(
|
||||
x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight
|
||||
)
|
||||
return x
|
||||
|
||||
# Fast path: upsampling with optional downsampling => use transpose strided convolution.
|
||||
@@ -633,17 +792,31 @@ def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight
|
||||
else:
|
||||
w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw)
|
||||
w = w.transpose(1, 2)
|
||||
w = w.reshape(groups * in_channels_per_group, out_channels // groups, kh, kw)
|
||||
w = w.reshape(
|
||||
groups * in_channels_per_group, out_channels // groups, kh, kw
|
||||
)
|
||||
px0 -= kw - 1
|
||||
px1 -= kw - up
|
||||
py0 -= kh - 1
|
||||
py1 -= kh - up
|
||||
pxt = max(min(-px0, -px1), 0)
|
||||
pyt = max(min(-py0, -py1), 0)
|
||||
x = _conv2d_wrapper(x=x, w=w, stride=up, padding=[pyt, pxt], groups=groups, transpose=True,
|
||||
flip_weight=(not flip_weight))
|
||||
x = upfirdn2d(x=x, f=f, padding=[px0 + pxt, px1 + pxt, py0 + pyt, py1 + pyt], gain=up ** 2,
|
||||
flip_filter=flip_filter)
|
||||
x = _conv2d_wrapper(
|
||||
x=x,
|
||||
w=w,
|
||||
stride=up,
|
||||
padding=[pyt, pxt],
|
||||
groups=groups,
|
||||
transpose=True,
|
||||
flip_weight=(not flip_weight),
|
||||
)
|
||||
x = upfirdn2d(
|
||||
x=x,
|
||||
f=f,
|
||||
padding=[px0 + pxt, px1 + pxt, py0 + pyt, py1 + pyt],
|
||||
gain=up**2,
|
||||
flip_filter=flip_filter,
|
||||
)
|
||||
if down > 1:
|
||||
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
|
||||
return x
|
||||
@@ -651,11 +824,19 @@ def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight
|
||||
# Fast path: no up/downsampling, padding supported by the underlying implementation => use plain conv2d.
|
||||
if up == 1 and down == 1:
|
||||
if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0:
|
||||
return _conv2d_wrapper(x=x, w=w, padding=[py0, px0], groups=groups, flip_weight=flip_weight)
|
||||
return _conv2d_wrapper(
|
||||
x=x, w=w, padding=[py0, px0], groups=groups, flip_weight=flip_weight
|
||||
)
|
||||
|
||||
# Fallback: Generic reference implementation.
|
||||
x = upfirdn2d(x=x, f=(f if up > 1 else None), up=up, padding=[px0, px1, py0, py1], gain=up ** 2,
|
||||
flip_filter=flip_filter)
|
||||
x = upfirdn2d(
|
||||
x=x,
|
||||
f=(f if up > 1 else None),
|
||||
up=up,
|
||||
padding=[px0, px1, py0, py1],
|
||||
gain=up**2,
|
||||
flip_filter=flip_filter,
|
||||
)
|
||||
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
|
||||
if down > 1:
|
||||
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
|
||||
@@ -663,50 +844,68 @@ def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight
|
||||
|
||||
|
||||
class Conv2dLayer(torch.nn.Module):
|
||||
def __init__(self,
|
||||
in_channels, # Number of input channels.
|
||||
out_channels, # Number of output channels.
|
||||
kernel_size, # Width and height of the convolution kernel.
|
||||
bias=True, # Apply additive bias before the activation function?
|
||||
activation='linear', # Activation function: 'relu', 'lrelu', etc.
|
||||
up=1, # Integer upsampling factor.
|
||||
down=1, # Integer downsampling factor.
|
||||
resample_filter=[1, 3, 3, 1], # Low-pass filter to apply when resampling activations.
|
||||
conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
|
||||
channels_last=False, # Expect the input to have memory_format=channels_last?
|
||||
trainable=True, # Update the weights of this layer during training?
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels, # Number of input channels.
|
||||
out_channels, # Number of output channels.
|
||||
kernel_size, # Width and height of the convolution kernel.
|
||||
bias=True, # Apply additive bias before the activation function?
|
||||
activation="linear", # Activation function: 'relu', 'lrelu', etc.
|
||||
up=1, # Integer upsampling factor.
|
||||
down=1, # Integer downsampling factor.
|
||||
resample_filter=[
|
||||
1,
|
||||
3,
|
||||
3,
|
||||
1,
|
||||
], # Low-pass filter to apply when resampling activations.
|
||||
conv_clamp=None, # Clamp the output to +-X, None = disable clamping.
|
||||
channels_last=False, # Expect the input to have memory_format=channels_last?
|
||||
trainable=True, # Update the weights of this layer during training?
|
||||
):
|
||||
super().__init__()
|
||||
self.activation = activation
|
||||
self.up = up
|
||||
self.down = down
|
||||
self.register_buffer('resample_filter', setup_filter(resample_filter))
|
||||
self.register_buffer("resample_filter", setup_filter(resample_filter))
|
||||
self.conv_clamp = conv_clamp
|
||||
self.padding = kernel_size // 2
|
||||
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
|
||||
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
|
||||
self.act_gain = activation_funcs[activation].def_gain
|
||||
|
||||
memory_format = torch.channels_last if channels_last else torch.contiguous_format
|
||||
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)
|
||||
memory_format = (
|
||||
torch.channels_last if channels_last else torch.contiguous_format
|
||||
)
|
||||
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(
|
||||
memory_format=memory_format
|
||||
)
|
||||
bias = torch.zeros([out_channels]) if bias else None
|
||||
if trainable:
|
||||
self.weight = torch.nn.Parameter(weight)
|
||||
self.bias = torch.nn.Parameter(bias) if bias is not None else None
|
||||
else:
|
||||
self.register_buffer('weight', weight)
|
||||
self.register_buffer("weight", weight)
|
||||
if bias is not None:
|
||||
self.register_buffer('bias', bias)
|
||||
self.register_buffer("bias", bias)
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
def forward(self, x, gain=1):
|
||||
w = self.weight * self.weight_gain
|
||||
x = conv2d_resample(x=x, w=w, f=self.resample_filter, up=self.up, down=self.down,
|
||||
padding=self.padding)
|
||||
x = conv2d_resample(
|
||||
x=x,
|
||||
w=w,
|
||||
f=self.resample_filter,
|
||||
up=self.up,
|
||||
down=self.down,
|
||||
padding=self.padding,
|
||||
)
|
||||
|
||||
act_gain = self.act_gain * gain
|
||||
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
|
||||
out = bias_act(x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp)
|
||||
out = bias_act(
|
||||
x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp
|
||||
)
|
||||
return out
|
||||
|
||||
|
||||
@@ -721,3 +920,22 @@ def set_seed(seed: int):
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
|
||||
def get_scheduler(sd_sampler, scheduler_config):
|
||||
if sd_sampler == SDSampler.ddim:
|
||||
return DDIMScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.pndm:
|
||||
return PNDMScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.k_lms:
|
||||
return LMSDiscreteScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.k_euler:
|
||||
return EulerDiscreteScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.k_euler_a:
|
||||
return EulerAncestralDiscreteScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.dpm_plus_plus:
|
||||
return DPMSolverMultistepScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.uni_pc:
|
||||
return UniPCMultistepScheduler.from_config(scheduler_config)
|
||||
else:
|
||||
raise ValueError(sd_sampler)
|
||||
|
||||
Reference in New Issue
Block a user