remove gfpgan dep
This commit is contained in:
31
iopaint/plugins/facexlib/detection/__init__.py
Normal file
31
iopaint/plugins/facexlib/detection/__init__.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import torch
|
||||
from copy import deepcopy
|
||||
|
||||
from ..utils import load_file_from_url
|
||||
from .retinaface import RetinaFace
|
||||
|
||||
|
||||
def init_detection_model(model_name, half=False, device='cuda', model_rootpath=None):
|
||||
if model_name == 'retinaface_resnet50':
|
||||
model = RetinaFace(network_name='resnet50', half=half, device=device)
|
||||
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
|
||||
elif model_name == 'retinaface_mobile0.25':
|
||||
model = RetinaFace(network_name='mobile0.25', half=half, device=device)
|
||||
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
|
||||
else:
|
||||
raise NotImplementedError(f'{model_name} is not implemented.')
|
||||
|
||||
model_path = load_file_from_url(
|
||||
url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
|
||||
|
||||
# TODO: clean pretrained model
|
||||
load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
|
||||
# remove unnecessary 'module.'
|
||||
for k, v in deepcopy(load_net).items():
|
||||
if k.startswith('module.'):
|
||||
load_net[k[7:]] = v
|
||||
load_net.pop(k)
|
||||
model.load_state_dict(load_net, strict=True)
|
||||
model.eval()
|
||||
model = model.to(device)
|
||||
return model
|
||||
219
iopaint/plugins/facexlib/detection/align_trans.py
Normal file
219
iopaint/plugins/facexlib/detection/align_trans.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from .matlab_cp2tform import get_similarity_transform_for_cv2
|
||||
|
||||
# reference facial points, a list of coordinates (x,y)
|
||||
REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
|
||||
[33.54930115, 92.3655014], [62.72990036, 92.20410156]]
|
||||
|
||||
DEFAULT_CROP_SIZE = (96, 112)
|
||||
|
||||
|
||||
class FaceWarpException(Exception):
|
||||
|
||||
def __str__(self):
|
||||
return 'In File {}:{}'.format(__file__, super.__str__(self))
|
||||
|
||||
|
||||
def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
get reference 5 key points according to crop settings:
|
||||
0. Set default crop_size:
|
||||
if default_square:
|
||||
crop_size = (112, 112)
|
||||
else:
|
||||
crop_size = (96, 112)
|
||||
1. Pad the crop_size by inner_padding_factor in each side;
|
||||
2. Resize crop_size into (output_size - outer_padding*2),
|
||||
pad into output_size with outer_padding;
|
||||
3. Output reference_5point;
|
||||
Parameters:
|
||||
----------
|
||||
@output_size: (w, h) or None
|
||||
size of aligned face image
|
||||
@inner_padding_factor: (w_factor, h_factor)
|
||||
padding factor for inner (w, h)
|
||||
@outer_padding: (w_pad, h_pad)
|
||||
each row is a pair of coordinates (x, y)
|
||||
@default_square: True or False
|
||||
if True:
|
||||
default crop_size = (112, 112)
|
||||
else:
|
||||
default crop_size = (96, 112);
|
||||
!!! make sure, if output_size is not None:
|
||||
(output_size - outer_padding)
|
||||
= some_scale * (default crop_size * (1.0 +
|
||||
inner_padding_factor))
|
||||
Returns:
|
||||
----------
|
||||
@reference_5point: 5x2 np.array
|
||||
each row is a pair of transformed coordinates (x, y)
|
||||
"""
|
||||
|
||||
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
|
||||
tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
|
||||
|
||||
# 0) make the inner region a square
|
||||
if default_square:
|
||||
size_diff = max(tmp_crop_size) - tmp_crop_size
|
||||
tmp_5pts += size_diff / 2
|
||||
tmp_crop_size += size_diff
|
||||
|
||||
if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):
|
||||
|
||||
return tmp_5pts
|
||||
|
||||
if (inner_padding_factor == 0 and outer_padding == (0, 0)):
|
||||
if output_size is None:
|
||||
return tmp_5pts
|
||||
else:
|
||||
raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
|
||||
|
||||
# check output size
|
||||
if not (0 <= inner_padding_factor <= 1.0):
|
||||
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
|
||||
|
||||
if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
|
||||
output_size = tmp_crop_size * \
|
||||
(1 + inner_padding_factor * 2).astype(np.int32)
|
||||
output_size += np.array(outer_padding)
|
||||
if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
|
||||
raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')
|
||||
|
||||
# 1) pad the inner region according inner_padding_factor
|
||||
if inner_padding_factor > 0:
|
||||
size_diff = tmp_crop_size * inner_padding_factor * 2
|
||||
tmp_5pts += size_diff / 2
|
||||
tmp_crop_size += np.round(size_diff).astype(np.int32)
|
||||
|
||||
# 2) resize the padded inner region
|
||||
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
|
||||
|
||||
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
|
||||
raise FaceWarpException('Must have (output_size - outer_padding)'
|
||||
'= some_scale * (crop_size * (1.0 + inner_padding_factor)')
|
||||
|
||||
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
|
||||
tmp_5pts = tmp_5pts * scale_factor
|
||||
# size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
|
||||
# tmp_5pts = tmp_5pts + size_diff / 2
|
||||
tmp_crop_size = size_bf_outer_pad
|
||||
|
||||
# 3) add outer_padding to make output_size
|
||||
reference_5point = tmp_5pts + np.array(outer_padding)
|
||||
tmp_crop_size = output_size
|
||||
|
||||
return reference_5point
|
||||
|
||||
|
||||
def get_affine_transform_matrix(src_pts, dst_pts):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
get affine transform matrix 'tfm' from src_pts to dst_pts
|
||||
Parameters:
|
||||
----------
|
||||
@src_pts: Kx2 np.array
|
||||
source points matrix, each row is a pair of coordinates (x, y)
|
||||
@dst_pts: Kx2 np.array
|
||||
destination points matrix, each row is a pair of coordinates (x, y)
|
||||
Returns:
|
||||
----------
|
||||
@tfm: 2x3 np.array
|
||||
transform matrix from src_pts to dst_pts
|
||||
"""
|
||||
|
||||
tfm = np.float32([[1, 0, 0], [0, 1, 0]])
|
||||
n_pts = src_pts.shape[0]
|
||||
ones = np.ones((n_pts, 1), src_pts.dtype)
|
||||
src_pts_ = np.hstack([src_pts, ones])
|
||||
dst_pts_ = np.hstack([dst_pts, ones])
|
||||
|
||||
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
|
||||
|
||||
if rank == 3:
|
||||
tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
|
||||
elif rank == 2:
|
||||
tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
|
||||
|
||||
return tfm
|
||||
|
||||
|
||||
def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
apply affine transform 'trans' to uv
|
||||
Parameters:
|
||||
----------
|
||||
@src_img: 3x3 np.array
|
||||
input image
|
||||
@facial_pts: could be
|
||||
1)a list of K coordinates (x,y)
|
||||
or
|
||||
2) Kx2 or 2xK np.array
|
||||
each row or col is a pair of coordinates (x, y)
|
||||
@reference_pts: could be
|
||||
1) a list of K coordinates (x,y)
|
||||
or
|
||||
2) Kx2 or 2xK np.array
|
||||
each row or col is a pair of coordinates (x, y)
|
||||
or
|
||||
3) None
|
||||
if None, use default reference facial points
|
||||
@crop_size: (w, h)
|
||||
output face image size
|
||||
@align_type: transform type, could be one of
|
||||
1) 'similarity': use similarity transform
|
||||
2) 'cv2_affine': use the first 3 points to do affine transform,
|
||||
by calling cv2.getAffineTransform()
|
||||
3) 'affine': use all points to do affine transform
|
||||
Returns:
|
||||
----------
|
||||
@face_img: output face image with size (w, h) = @crop_size
|
||||
"""
|
||||
|
||||
if reference_pts is None:
|
||||
if crop_size[0] == 96 and crop_size[1] == 112:
|
||||
reference_pts = REFERENCE_FACIAL_POINTS
|
||||
else:
|
||||
default_square = False
|
||||
inner_padding_factor = 0
|
||||
outer_padding = (0, 0)
|
||||
output_size = crop_size
|
||||
|
||||
reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
|
||||
default_square)
|
||||
|
||||
ref_pts = np.float32(reference_pts)
|
||||
ref_pts_shp = ref_pts.shape
|
||||
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
|
||||
raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')
|
||||
|
||||
if ref_pts_shp[0] == 2:
|
||||
ref_pts = ref_pts.T
|
||||
|
||||
src_pts = np.float32(facial_pts)
|
||||
src_pts_shp = src_pts.shape
|
||||
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
|
||||
raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')
|
||||
|
||||
if src_pts_shp[0] == 2:
|
||||
src_pts = src_pts.T
|
||||
|
||||
if src_pts.shape != ref_pts.shape:
|
||||
raise FaceWarpException('facial_pts and reference_pts must have the same shape')
|
||||
|
||||
if align_type == 'cv2_affine':
|
||||
tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
|
||||
elif align_type == 'affine':
|
||||
tfm = get_affine_transform_matrix(src_pts, ref_pts)
|
||||
else:
|
||||
tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
|
||||
|
||||
face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
|
||||
|
||||
return face_img
|
||||
317
iopaint/plugins/facexlib/detection/matlab_cp2tform.py
Normal file
317
iopaint/plugins/facexlib/detection/matlab_cp2tform.py
Normal file
@@ -0,0 +1,317 @@
|
||||
import numpy as np
|
||||
from numpy.linalg import inv, lstsq
|
||||
from numpy.linalg import matrix_rank as rank
|
||||
from numpy.linalg import norm
|
||||
|
||||
|
||||
class MatlabCp2tormException(Exception):
|
||||
|
||||
def __str__(self):
|
||||
return 'In File {}:{}'.format(__file__, super.__str__(self))
|
||||
|
||||
|
||||
def tformfwd(trans, uv):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
apply affine transform 'trans' to uv
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@trans: 3x3 np.array
|
||||
transform matrix
|
||||
@uv: Kx2 np.array
|
||||
each row is a pair of coordinates (x, y)
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@xy: Kx2 np.array
|
||||
each row is a pair of transformed coordinates (x, y)
|
||||
"""
|
||||
uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
|
||||
xy = np.dot(uv, trans)
|
||||
xy = xy[:, 0:-1]
|
||||
return xy
|
||||
|
||||
|
||||
def tforminv(trans, uv):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
apply the inverse of affine transform 'trans' to uv
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@trans: 3x3 np.array
|
||||
transform matrix
|
||||
@uv: Kx2 np.array
|
||||
each row is a pair of coordinates (x, y)
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@xy: Kx2 np.array
|
||||
each row is a pair of inverse-transformed coordinates (x, y)
|
||||
"""
|
||||
Tinv = inv(trans)
|
||||
xy = tformfwd(Tinv, uv)
|
||||
return xy
|
||||
|
||||
|
||||
def findNonreflectiveSimilarity(uv, xy, options=None):
|
||||
options = {'K': 2}
|
||||
|
||||
K = options['K']
|
||||
M = xy.shape[0]
|
||||
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
||||
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
||||
|
||||
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
|
||||
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
|
||||
X = np.vstack((tmp1, tmp2))
|
||||
|
||||
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
||||
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
||||
U = np.vstack((u, v))
|
||||
|
||||
# We know that X * r = U
|
||||
if rank(X) >= 2 * K:
|
||||
r, _, _, _ = lstsq(X, U, rcond=-1)
|
||||
r = np.squeeze(r)
|
||||
else:
|
||||
raise Exception('cp2tform:twoUniquePointsReq')
|
||||
sc = r[0]
|
||||
ss = r[1]
|
||||
tx = r[2]
|
||||
ty = r[3]
|
||||
|
||||
Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
|
||||
T = inv(Tinv)
|
||||
T[:, 2] = np.array([0, 0, 1])
|
||||
|
||||
return T, Tinv
|
||||
|
||||
|
||||
def findSimilarity(uv, xy, options=None):
|
||||
options = {'K': 2}
|
||||
|
||||
# uv = np.array(uv)
|
||||
# xy = np.array(xy)
|
||||
|
||||
# Solve for trans1
|
||||
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
|
||||
|
||||
# Solve for trans2
|
||||
|
||||
# manually reflect the xy data across the Y-axis
|
||||
xyR = xy
|
||||
xyR[:, 0] = -1 * xyR[:, 0]
|
||||
|
||||
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
|
||||
|
||||
# manually reflect the tform to undo the reflection done on xyR
|
||||
TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
||||
|
||||
trans2 = np.dot(trans2r, TreflectY)
|
||||
|
||||
# Figure out if trans1 or trans2 is better
|
||||
xy1 = tformfwd(trans1, uv)
|
||||
norm1 = norm(xy1 - xy)
|
||||
|
||||
xy2 = tformfwd(trans2, uv)
|
||||
norm2 = norm(xy2 - xy)
|
||||
|
||||
if norm1 <= norm2:
|
||||
return trans1, trans1_inv
|
||||
else:
|
||||
trans2_inv = inv(trans2)
|
||||
return trans2, trans2_inv
|
||||
|
||||
|
||||
def get_similarity_transform(src_pts, dst_pts, reflective=True):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
Find Similarity Transform Matrix 'trans':
|
||||
u = src_pts[:, 0]
|
||||
v = src_pts[:, 1]
|
||||
x = dst_pts[:, 0]
|
||||
y = dst_pts[:, 1]
|
||||
[x, y, 1] = [u, v, 1] * trans
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@src_pts: Kx2 np.array
|
||||
source points, each row is a pair of coordinates (x, y)
|
||||
@dst_pts: Kx2 np.array
|
||||
destination points, each row is a pair of transformed
|
||||
coordinates (x, y)
|
||||
@reflective: True or False
|
||||
if True:
|
||||
use reflective similarity transform
|
||||
else:
|
||||
use non-reflective similarity transform
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@trans: 3x3 np.array
|
||||
transform matrix from uv to xy
|
||||
trans_inv: 3x3 np.array
|
||||
inverse of trans, transform matrix from xy to uv
|
||||
"""
|
||||
|
||||
if reflective:
|
||||
trans, trans_inv = findSimilarity(src_pts, dst_pts)
|
||||
else:
|
||||
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
|
||||
|
||||
return trans, trans_inv
|
||||
|
||||
|
||||
def cvt_tform_mat_for_cv2(trans):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
Convert Transform Matrix 'trans' into 'cv2_trans' which could be
|
||||
directly used by cv2.warpAffine():
|
||||
u = src_pts[:, 0]
|
||||
v = src_pts[:, 1]
|
||||
x = dst_pts[:, 0]
|
||||
y = dst_pts[:, 1]
|
||||
[x, y].T = cv_trans * [u, v, 1].T
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@trans: 3x3 np.array
|
||||
transform matrix from uv to xy
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@cv2_trans: 2x3 np.array
|
||||
transform matrix from src_pts to dst_pts, could be directly used
|
||||
for cv2.warpAffine()
|
||||
"""
|
||||
cv2_trans = trans[:, 0:2].T
|
||||
|
||||
return cv2_trans
|
||||
|
||||
|
||||
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
Find Similarity Transform Matrix 'cv2_trans' which could be
|
||||
directly used by cv2.warpAffine():
|
||||
u = src_pts[:, 0]
|
||||
v = src_pts[:, 1]
|
||||
x = dst_pts[:, 0]
|
||||
y = dst_pts[:, 1]
|
||||
[x, y].T = cv_trans * [u, v, 1].T
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@src_pts: Kx2 np.array
|
||||
source points, each row is a pair of coordinates (x, y)
|
||||
@dst_pts: Kx2 np.array
|
||||
destination points, each row is a pair of transformed
|
||||
coordinates (x, y)
|
||||
reflective: True or False
|
||||
if True:
|
||||
use reflective similarity transform
|
||||
else:
|
||||
use non-reflective similarity transform
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@cv2_trans: 2x3 np.array
|
||||
transform matrix from src_pts to dst_pts, could be directly used
|
||||
for cv2.warpAffine()
|
||||
"""
|
||||
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
|
||||
cv2_trans = cvt_tform_mat_for_cv2(trans)
|
||||
|
||||
return cv2_trans
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
u = [0, 6, -2]
|
||||
v = [0, 3, 5]
|
||||
x = [-1, 0, 4]
|
||||
y = [-1, -10, 4]
|
||||
|
||||
# In Matlab, run:
|
||||
#
|
||||
# uv = [u'; v'];
|
||||
# xy = [x'; y'];
|
||||
# tform_sim=cp2tform(uv,xy,'similarity');
|
||||
#
|
||||
# trans = tform_sim.tdata.T
|
||||
# ans =
|
||||
# -0.0764 -1.6190 0
|
||||
# 1.6190 -0.0764 0
|
||||
# -3.2156 0.0290 1.0000
|
||||
# trans_inv = tform_sim.tdata.Tinv
|
||||
# ans =
|
||||
#
|
||||
# -0.0291 0.6163 0
|
||||
# -0.6163 -0.0291 0
|
||||
# -0.0756 1.9826 1.0000
|
||||
# xy_m=tformfwd(tform_sim, u,v)
|
||||
#
|
||||
# xy_m =
|
||||
#
|
||||
# -3.2156 0.0290
|
||||
# 1.1833 -9.9143
|
||||
# 5.0323 2.8853
|
||||
# uv_m=tforminv(tform_sim, x,y)
|
||||
#
|
||||
# uv_m =
|
||||
#
|
||||
# 0.5698 1.3953
|
||||
# 6.0872 2.2733
|
||||
# -2.6570 4.3314
|
||||
"""
|
||||
u = [0, 6, -2]
|
||||
v = [0, 3, 5]
|
||||
x = [-1, 0, 4]
|
||||
y = [-1, -10, 4]
|
||||
|
||||
uv = np.array((u, v)).T
|
||||
xy = np.array((x, y)).T
|
||||
|
||||
print('\n--->uv:')
|
||||
print(uv)
|
||||
print('\n--->xy:')
|
||||
print(xy)
|
||||
|
||||
trans, trans_inv = get_similarity_transform(uv, xy)
|
||||
|
||||
print('\n--->trans matrix:')
|
||||
print(trans)
|
||||
|
||||
print('\n--->trans_inv matrix:')
|
||||
print(trans_inv)
|
||||
|
||||
print('\n---> apply transform to uv')
|
||||
print('\nxy_m = uv_augmented * trans')
|
||||
uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
|
||||
xy_m = np.dot(uv_aug, trans)
|
||||
print(xy_m)
|
||||
|
||||
print('\nxy_m = tformfwd(trans, uv)')
|
||||
xy_m = tformfwd(trans, uv)
|
||||
print(xy_m)
|
||||
|
||||
print('\n---> apply inverse transform to xy')
|
||||
print('\nuv_m = xy_augmented * trans_inv')
|
||||
xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
|
||||
uv_m = np.dot(xy_aug, trans_inv)
|
||||
print(uv_m)
|
||||
|
||||
print('\nuv_m = tformfwd(trans_inv, xy)')
|
||||
uv_m = tformfwd(trans_inv, xy)
|
||||
print(uv_m)
|
||||
|
||||
uv_m = tforminv(trans, xy)
|
||||
print('\nuv_m = tforminv(trans, xy)')
|
||||
print(uv_m)
|
||||
419
iopaint/plugins/facexlib/detection/retinaface.py
Normal file
419
iopaint/plugins/facexlib/detection/retinaface.py
Normal file
@@ -0,0 +1,419 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from PIL import Image
|
||||
from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
|
||||
|
||||
from .align_trans import get_reference_facial_points, warp_and_crop_face
|
||||
from .retinaface_net import (
|
||||
FPN,
|
||||
SSH,
|
||||
MobileNetV1,
|
||||
make_bbox_head,
|
||||
make_class_head,
|
||||
make_landmark_head,
|
||||
)
|
||||
from .retinaface_utils import (
|
||||
PriorBox,
|
||||
batched_decode,
|
||||
batched_decode_landm,
|
||||
decode,
|
||||
decode_landm,
|
||||
py_cpu_nms,
|
||||
)
|
||||
|
||||
|
||||
def generate_config(network_name):
|
||||
cfg_mnet = {
|
||||
"name": "mobilenet0.25",
|
||||
"min_sizes": [[16, 32], [64, 128], [256, 512]],
|
||||
"steps": [8, 16, 32],
|
||||
"variance": [0.1, 0.2],
|
||||
"clip": False,
|
||||
"loc_weight": 2.0,
|
||||
"gpu_train": True,
|
||||
"batch_size": 32,
|
||||
"ngpu": 1,
|
||||
"epoch": 250,
|
||||
"decay1": 190,
|
||||
"decay2": 220,
|
||||
"image_size": 640,
|
||||
"return_layers": {"stage1": 1, "stage2": 2, "stage3": 3},
|
||||
"in_channel": 32,
|
||||
"out_channel": 64,
|
||||
}
|
||||
|
||||
cfg_re50 = {
|
||||
"name": "Resnet50",
|
||||
"min_sizes": [[16, 32], [64, 128], [256, 512]],
|
||||
"steps": [8, 16, 32],
|
||||
"variance": [0.1, 0.2],
|
||||
"clip": False,
|
||||
"loc_weight": 2.0,
|
||||
"gpu_train": True,
|
||||
"batch_size": 24,
|
||||
"ngpu": 4,
|
||||
"epoch": 100,
|
||||
"decay1": 70,
|
||||
"decay2": 90,
|
||||
"image_size": 840,
|
||||
"return_layers": {"layer2": 1, "layer3": 2, "layer4": 3},
|
||||
"in_channel": 256,
|
||||
"out_channel": 256,
|
||||
}
|
||||
|
||||
if network_name == "mobile0.25":
|
||||
return cfg_mnet
|
||||
elif network_name == "resnet50":
|
||||
return cfg_re50
|
||||
else:
|
||||
raise NotImplementedError(f"network_name={network_name}")
|
||||
|
||||
|
||||
class RetinaFace(nn.Module):
|
||||
def __init__(self, network_name="resnet50", half=False, phase="test", device=None):
|
||||
self.device = (
|
||||
torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
if device is None
|
||||
else device
|
||||
)
|
||||
|
||||
super(RetinaFace, self).__init__()
|
||||
self.half_inference = half
|
||||
cfg = generate_config(network_name)
|
||||
self.backbone = cfg["name"]
|
||||
|
||||
self.model_name = f"retinaface_{network_name}"
|
||||
self.cfg = cfg
|
||||
self.phase = phase
|
||||
self.target_size, self.max_size = 1600, 2150
|
||||
self.resize, self.scale, self.scale1 = 1.0, None, None
|
||||
self.mean_tensor = torch.tensor(
|
||||
[[[[104.0]], [[117.0]], [[123.0]]]], device=self.device
|
||||
)
|
||||
self.reference = get_reference_facial_points(default_square=True)
|
||||
# Build network.
|
||||
backbone = None
|
||||
if cfg["name"] == "mobilenet0.25":
|
||||
backbone = MobileNetV1()
|
||||
self.body = IntermediateLayerGetter(backbone, cfg["return_layers"])
|
||||
elif cfg["name"] == "Resnet50":
|
||||
import torchvision.models as models
|
||||
|
||||
backbone = models.resnet50(pretrained=False)
|
||||
self.body = IntermediateLayerGetter(backbone, cfg["return_layers"])
|
||||
|
||||
in_channels_stage2 = cfg["in_channel"]
|
||||
in_channels_list = [
|
||||
in_channels_stage2 * 2,
|
||||
in_channels_stage2 * 4,
|
||||
in_channels_stage2 * 8,
|
||||
]
|
||||
|
||||
out_channels = cfg["out_channel"]
|
||||
self.fpn = FPN(in_channels_list, out_channels)
|
||||
self.ssh1 = SSH(out_channels, out_channels)
|
||||
self.ssh2 = SSH(out_channels, out_channels)
|
||||
self.ssh3 = SSH(out_channels, out_channels)
|
||||
|
||||
self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg["out_channel"])
|
||||
self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg["out_channel"])
|
||||
self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg["out_channel"])
|
||||
|
||||
self.to(self.device)
|
||||
self.eval()
|
||||
if self.half_inference:
|
||||
self.half()
|
||||
|
||||
def forward(self, inputs):
|
||||
out = self.body(inputs)
|
||||
|
||||
if self.backbone == "mobilenet0.25" or self.backbone == "Resnet50":
|
||||
out = list(out.values())
|
||||
# FPN
|
||||
fpn = self.fpn(out)
|
||||
|
||||
# SSH
|
||||
feature1 = self.ssh1(fpn[0])
|
||||
feature2 = self.ssh2(fpn[1])
|
||||
feature3 = self.ssh3(fpn[2])
|
||||
features = [feature1, feature2, feature3]
|
||||
|
||||
bbox_regressions = torch.cat(
|
||||
[self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1
|
||||
)
|
||||
classifications = torch.cat(
|
||||
[self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1
|
||||
)
|
||||
tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
|
||||
ldm_regressions = torch.cat(tmp, dim=1)
|
||||
|
||||
if self.phase == "train":
|
||||
output = (bbox_regressions, classifications, ldm_regressions)
|
||||
else:
|
||||
output = (
|
||||
bbox_regressions,
|
||||
F.softmax(classifications, dim=-1),
|
||||
ldm_regressions,
|
||||
)
|
||||
return output
|
||||
|
||||
def __detect_faces(self, inputs):
|
||||
# get scale
|
||||
height, width = inputs.shape[2:]
|
||||
self.scale = torch.tensor(
|
||||
[width, height, width, height], dtype=torch.float32, device=self.device
|
||||
)
|
||||
tmp = [
|
||||
width,
|
||||
height,
|
||||
width,
|
||||
height,
|
||||
width,
|
||||
height,
|
||||
width,
|
||||
height,
|
||||
width,
|
||||
height,
|
||||
]
|
||||
self.scale1 = torch.tensor(tmp, dtype=torch.float32, device=self.device)
|
||||
|
||||
# forawrd
|
||||
inputs = inputs.to(self.device)
|
||||
if self.half_inference:
|
||||
inputs = inputs.half()
|
||||
loc, conf, landmarks = self(inputs)
|
||||
|
||||
# get priorbox
|
||||
priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
|
||||
priors = priorbox.forward().to(self.device)
|
||||
|
||||
return loc, conf, landmarks, priors
|
||||
|
||||
# single image detection
|
||||
def transform(self, image, use_origin_size):
|
||||
# convert to opencv format
|
||||
if isinstance(image, Image.Image):
|
||||
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
|
||||
image = image.astype(np.float32)
|
||||
|
||||
# testing scale
|
||||
im_size_min = np.min(image.shape[0:2])
|
||||
im_size_max = np.max(image.shape[0:2])
|
||||
resize = float(self.target_size) / float(im_size_min)
|
||||
|
||||
# prevent bigger axis from being more than max_size
|
||||
if np.round(resize * im_size_max) > self.max_size:
|
||||
resize = float(self.max_size) / float(im_size_max)
|
||||
resize = 1 if use_origin_size else resize
|
||||
|
||||
# resize
|
||||
if resize != 1:
|
||||
image = cv2.resize(
|
||||
image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR
|
||||
)
|
||||
|
||||
# convert to torch.tensor format
|
||||
# image -= (104, 117, 123)
|
||||
image = image.transpose(2, 0, 1)
|
||||
image = torch.from_numpy(image).unsqueeze(0)
|
||||
|
||||
return image, resize
|
||||
|
||||
def detect_faces(
|
||||
self,
|
||||
image,
|
||||
conf_threshold=0.8,
|
||||
nms_threshold=0.4,
|
||||
use_origin_size=True,
|
||||
):
|
||||
image, self.resize = self.transform(image, use_origin_size)
|
||||
image = image.to(self.device)
|
||||
if self.half_inference:
|
||||
image = image.half()
|
||||
image = image - self.mean_tensor
|
||||
|
||||
loc, conf, landmarks, priors = self.__detect_faces(image)
|
||||
|
||||
boxes = decode(loc.data.squeeze(0), priors.data, self.cfg["variance"])
|
||||
boxes = boxes * self.scale / self.resize
|
||||
boxes = boxes.cpu().numpy()
|
||||
|
||||
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
|
||||
|
||||
landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg["variance"])
|
||||
landmarks = landmarks * self.scale1 / self.resize
|
||||
landmarks = landmarks.cpu().numpy()
|
||||
|
||||
# ignore low scores
|
||||
inds = np.where(scores > conf_threshold)[0]
|
||||
boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
|
||||
|
||||
# sort
|
||||
order = scores.argsort()[::-1]
|
||||
boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
|
||||
|
||||
# do NMS
|
||||
bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(
|
||||
np.float32, copy=False
|
||||
)
|
||||
keep = py_cpu_nms(bounding_boxes, nms_threshold)
|
||||
bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
|
||||
# self.t['forward_pass'].toc()
|
||||
# print(self.t['forward_pass'].average_time)
|
||||
# import sys
|
||||
# sys.stdout.flush()
|
||||
return np.concatenate((bounding_boxes, landmarks), axis=1)
|
||||
|
||||
def __align_multi(self, image, boxes, landmarks, limit=None):
|
||||
if len(boxes) < 1:
|
||||
return [], []
|
||||
|
||||
if limit:
|
||||
boxes = boxes[:limit]
|
||||
landmarks = landmarks[:limit]
|
||||
|
||||
faces = []
|
||||
for landmark in landmarks:
|
||||
facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
|
||||
|
||||
warped_face = warp_and_crop_face(
|
||||
np.array(image), facial5points, self.reference, crop_size=(112, 112)
|
||||
)
|
||||
faces.append(warped_face)
|
||||
|
||||
return np.concatenate((boxes, landmarks), axis=1), faces
|
||||
|
||||
def align_multi(self, img, conf_threshold=0.8, limit=None):
|
||||
rlt = self.detect_faces(img, conf_threshold=conf_threshold)
|
||||
boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
|
||||
|
||||
return self.__align_multi(img, boxes, landmarks, limit)
|
||||
|
||||
# batched detection
|
||||
def batched_transform(self, frames, use_origin_size):
|
||||
"""
|
||||
Arguments:
|
||||
frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
|
||||
type=np.float32, BGR format).
|
||||
use_origin_size: whether to use origin size.
|
||||
"""
|
||||
from_PIL = True if isinstance(frames[0], Image.Image) else False
|
||||
|
||||
# convert to opencv format
|
||||
if from_PIL:
|
||||
frames = [
|
||||
cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames
|
||||
]
|
||||
frames = np.asarray(frames, dtype=np.float32)
|
||||
|
||||
# testing scale
|
||||
im_size_min = np.min(frames[0].shape[0:2])
|
||||
im_size_max = np.max(frames[0].shape[0:2])
|
||||
resize = float(self.target_size) / float(im_size_min)
|
||||
|
||||
# prevent bigger axis from being more than max_size
|
||||
if np.round(resize * im_size_max) > self.max_size:
|
||||
resize = float(self.max_size) / float(im_size_max)
|
||||
resize = 1 if use_origin_size else resize
|
||||
|
||||
# resize
|
||||
if resize != 1:
|
||||
if not from_PIL:
|
||||
frames = F.interpolate(frames, scale_factor=resize)
|
||||
else:
|
||||
frames = [
|
||||
cv2.resize(
|
||||
frame,
|
||||
None,
|
||||
None,
|
||||
fx=resize,
|
||||
fy=resize,
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
for frame in frames
|
||||
]
|
||||
|
||||
# convert to torch.tensor format
|
||||
if not from_PIL:
|
||||
frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
|
||||
else:
|
||||
frames = frames.transpose((0, 3, 1, 2))
|
||||
frames = torch.from_numpy(frames)
|
||||
|
||||
return frames, resize
|
||||
|
||||
def batched_detect_faces(
|
||||
self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True
|
||||
):
|
||||
"""
|
||||
Arguments:
|
||||
frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
|
||||
type=np.uint8, BGR format).
|
||||
conf_threshold: confidence threshold.
|
||||
nms_threshold: nms threshold.
|
||||
use_origin_size: whether to use origin size.
|
||||
Returns:
|
||||
final_bounding_boxes: list of np.array ([n_boxes, 5],
|
||||
type=np.float32).
|
||||
final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
|
||||
"""
|
||||
# self.t['forward_pass'].tic()
|
||||
frames, self.resize = self.batched_transform(frames, use_origin_size)
|
||||
frames = frames.to(self.device)
|
||||
frames = frames - self.mean_tensor
|
||||
|
||||
b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
|
||||
|
||||
final_bounding_boxes, final_landmarks = [], []
|
||||
|
||||
# decode
|
||||
priors = priors.unsqueeze(0)
|
||||
b_loc = (
|
||||
batched_decode(b_loc, priors, self.cfg["variance"])
|
||||
* self.scale
|
||||
/ self.resize
|
||||
)
|
||||
b_landmarks = (
|
||||
batched_decode_landm(b_landmarks, priors, self.cfg["variance"])
|
||||
* self.scale1
|
||||
/ self.resize
|
||||
)
|
||||
b_conf = b_conf[:, :, 1]
|
||||
|
||||
# index for selection
|
||||
b_indice = b_conf > conf_threshold
|
||||
|
||||
# concat
|
||||
b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
|
||||
|
||||
for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
|
||||
# ignore low scores
|
||||
pred, landm = pred[inds, :], landm[inds, :]
|
||||
if pred.shape[0] == 0:
|
||||
final_bounding_boxes.append(np.array([], dtype=np.float32))
|
||||
final_landmarks.append(np.array([], dtype=np.float32))
|
||||
continue
|
||||
|
||||
# sort
|
||||
# order = score.argsort(descending=True)
|
||||
# box, landm, score = box[order], landm[order], score[order]
|
||||
|
||||
# to CPU
|
||||
bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
|
||||
|
||||
# NMS
|
||||
keep = py_cpu_nms(bounding_boxes, nms_threshold)
|
||||
bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
|
||||
|
||||
# append
|
||||
final_bounding_boxes.append(bounding_boxes)
|
||||
final_landmarks.append(landmarks)
|
||||
# self.t['forward_pass'].toc(average=True)
|
||||
# self.batch_time += self.t['forward_pass'].diff
|
||||
# self.total_frame += len(frames)
|
||||
# print(self.batch_time / self.total_frame)
|
||||
|
||||
return final_bounding_boxes, final_landmarks
|
||||
196
iopaint/plugins/facexlib/detection/retinaface_net.py
Normal file
196
iopaint/plugins/facexlib/detection/retinaface_net.py
Normal file
@@ -0,0 +1,196 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def conv_bn(inp, oup, stride=1, leaky=0):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
|
||||
nn.LeakyReLU(negative_slope=leaky, inplace=True))
|
||||
|
||||
|
||||
def conv_bn_no_relu(inp, oup, stride):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
)
|
||||
|
||||
|
||||
def conv_bn1X1(inp, oup, stride, leaky=0):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
|
||||
nn.LeakyReLU(negative_slope=leaky, inplace=True))
|
||||
|
||||
|
||||
def conv_dw(inp, oup, stride, leaky=0.1):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
|
||||
nn.BatchNorm2d(inp),
|
||||
nn.LeakyReLU(negative_slope=leaky, inplace=True),
|
||||
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
nn.LeakyReLU(negative_slope=leaky, inplace=True),
|
||||
)
|
||||
|
||||
|
||||
class SSH(nn.Module):
|
||||
|
||||
def __init__(self, in_channel, out_channel):
|
||||
super(SSH, self).__init__()
|
||||
assert out_channel % 4 == 0
|
||||
leaky = 0
|
||||
if (out_channel <= 64):
|
||||
leaky = 0.1
|
||||
self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
|
||||
|
||||
self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
|
||||
self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
|
||||
|
||||
self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
|
||||
self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
|
||||
|
||||
def forward(self, input):
|
||||
conv3X3 = self.conv3X3(input)
|
||||
|
||||
conv5X5_1 = self.conv5X5_1(input)
|
||||
conv5X5 = self.conv5X5_2(conv5X5_1)
|
||||
|
||||
conv7X7_2 = self.conv7X7_2(conv5X5_1)
|
||||
conv7X7 = self.conv7x7_3(conv7X7_2)
|
||||
|
||||
out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
|
||||
out = F.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class FPN(nn.Module):
|
||||
|
||||
def __init__(self, in_channels_list, out_channels):
|
||||
super(FPN, self).__init__()
|
||||
leaky = 0
|
||||
if (out_channels <= 64):
|
||||
leaky = 0.1
|
||||
self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
|
||||
self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
|
||||
self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
|
||||
|
||||
self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
|
||||
self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
|
||||
|
||||
def forward(self, input):
|
||||
# names = list(input.keys())
|
||||
# input = list(input.values())
|
||||
|
||||
output1 = self.output1(input[0])
|
||||
output2 = self.output2(input[1])
|
||||
output3 = self.output3(input[2])
|
||||
|
||||
up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
|
||||
output2 = output2 + up3
|
||||
output2 = self.merge2(output2)
|
||||
|
||||
up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
|
||||
output1 = output1 + up2
|
||||
output1 = self.merge1(output1)
|
||||
|
||||
out = [output1, output2, output3]
|
||||
return out
|
||||
|
||||
|
||||
class MobileNetV1(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(MobileNetV1, self).__init__()
|
||||
self.stage1 = nn.Sequential(
|
||||
conv_bn(3, 8, 2, leaky=0.1), # 3
|
||||
conv_dw(8, 16, 1), # 7
|
||||
conv_dw(16, 32, 2), # 11
|
||||
conv_dw(32, 32, 1), # 19
|
||||
conv_dw(32, 64, 2), # 27
|
||||
conv_dw(64, 64, 1), # 43
|
||||
)
|
||||
self.stage2 = nn.Sequential(
|
||||
conv_dw(64, 128, 2), # 43 + 16 = 59
|
||||
conv_dw(128, 128, 1), # 59 + 32 = 91
|
||||
conv_dw(128, 128, 1), # 91 + 32 = 123
|
||||
conv_dw(128, 128, 1), # 123 + 32 = 155
|
||||
conv_dw(128, 128, 1), # 155 + 32 = 187
|
||||
conv_dw(128, 128, 1), # 187 + 32 = 219
|
||||
)
|
||||
self.stage3 = nn.Sequential(
|
||||
conv_dw(128, 256, 2), # 219 +3 2 = 241
|
||||
conv_dw(256, 256, 1), # 241 + 64 = 301
|
||||
)
|
||||
self.avg = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = nn.Linear(256, 1000)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.stage1(x)
|
||||
x = self.stage2(x)
|
||||
x = self.stage3(x)
|
||||
x = self.avg(x)
|
||||
# x = self.model(x)
|
||||
x = x.view(-1, 256)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
class ClassHead(nn.Module):
|
||||
|
||||
def __init__(self, inchannels=512, num_anchors=3):
|
||||
super(ClassHead, self).__init__()
|
||||
self.num_anchors = num_anchors
|
||||
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1x1(x)
|
||||
out = out.permute(0, 2, 3, 1).contiguous()
|
||||
|
||||
return out.view(out.shape[0], -1, 2)
|
||||
|
||||
|
||||
class BboxHead(nn.Module):
|
||||
|
||||
def __init__(self, inchannels=512, num_anchors=3):
|
||||
super(BboxHead, self).__init__()
|
||||
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1x1(x)
|
||||
out = out.permute(0, 2, 3, 1).contiguous()
|
||||
|
||||
return out.view(out.shape[0], -1, 4)
|
||||
|
||||
|
||||
class LandmarkHead(nn.Module):
|
||||
|
||||
def __init__(self, inchannels=512, num_anchors=3):
|
||||
super(LandmarkHead, self).__init__()
|
||||
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1x1(x)
|
||||
out = out.permute(0, 2, 3, 1).contiguous()
|
||||
|
||||
return out.view(out.shape[0], -1, 10)
|
||||
|
||||
|
||||
def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
|
||||
classhead = nn.ModuleList()
|
||||
for i in range(fpn_num):
|
||||
classhead.append(ClassHead(inchannels, anchor_num))
|
||||
return classhead
|
||||
|
||||
|
||||
def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
|
||||
bboxhead = nn.ModuleList()
|
||||
for i in range(fpn_num):
|
||||
bboxhead.append(BboxHead(inchannels, anchor_num))
|
||||
return bboxhead
|
||||
|
||||
|
||||
def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
|
||||
landmarkhead = nn.ModuleList()
|
||||
for i in range(fpn_num):
|
||||
landmarkhead.append(LandmarkHead(inchannels, anchor_num))
|
||||
return landmarkhead
|
||||
421
iopaint/plugins/facexlib/detection/retinaface_utils.py
Normal file
421
iopaint/plugins/facexlib/detection/retinaface_utils.py
Normal file
@@ -0,0 +1,421 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision
|
||||
from itertools import product as product
|
||||
from math import ceil
|
||||
|
||||
|
||||
class PriorBox(object):
|
||||
|
||||
def __init__(self, cfg, image_size=None, phase='train'):
|
||||
super(PriorBox, self).__init__()
|
||||
self.min_sizes = cfg['min_sizes']
|
||||
self.steps = cfg['steps']
|
||||
self.clip = cfg['clip']
|
||||
self.image_size = image_size
|
||||
self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps]
|
||||
self.name = 's'
|
||||
|
||||
def forward(self):
|
||||
anchors = []
|
||||
for k, f in enumerate(self.feature_maps):
|
||||
min_sizes = self.min_sizes[k]
|
||||
for i, j in product(range(f[0]), range(f[1])):
|
||||
for min_size in min_sizes:
|
||||
s_kx = min_size / self.image_size[1]
|
||||
s_ky = min_size / self.image_size[0]
|
||||
dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
|
||||
dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
|
||||
for cy, cx in product(dense_cy, dense_cx):
|
||||
anchors += [cx, cy, s_kx, s_ky]
|
||||
|
||||
# back to torch land
|
||||
output = torch.Tensor(anchors).view(-1, 4)
|
||||
if self.clip:
|
||||
output.clamp_(max=1, min=0)
|
||||
return output
|
||||
|
||||
|
||||
def py_cpu_nms(dets, thresh):
|
||||
"""Pure Python NMS baseline."""
|
||||
keep = torchvision.ops.nms(
|
||||
boxes=torch.Tensor(dets[:, :4]),
|
||||
scores=torch.Tensor(dets[:, 4]),
|
||||
iou_threshold=thresh,
|
||||
)
|
||||
|
||||
return list(keep)
|
||||
|
||||
|
||||
def point_form(boxes):
|
||||
""" Convert prior_boxes to (xmin, ymin, xmax, ymax)
|
||||
representation for comparison to point form ground truth data.
|
||||
Args:
|
||||
boxes: (tensor) center-size default boxes from priorbox layers.
|
||||
Return:
|
||||
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
|
||||
"""
|
||||
return torch.cat(
|
||||
(
|
||||
boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin
|
||||
boxes[:, :2] + boxes[:, 2:] / 2),
|
||||
1) # xmax, ymax
|
||||
|
||||
|
||||
def center_size(boxes):
|
||||
""" Convert prior_boxes to (cx, cy, w, h)
|
||||
representation for comparison to center-size form ground truth data.
|
||||
Args:
|
||||
boxes: (tensor) point_form boxes
|
||||
Return:
|
||||
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
|
||||
"""
|
||||
return torch.cat(
|
||||
(boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy
|
||||
boxes[:, 2:] - boxes[:, :2],
|
||||
1) # w, h
|
||||
|
||||
|
||||
def intersect(box_a, box_b):
|
||||
""" We resize both tensors to [A,B,2] without new malloc:
|
||||
[A,2] -> [A,1,2] -> [A,B,2]
|
||||
[B,2] -> [1,B,2] -> [A,B,2]
|
||||
Then we compute the area of intersect between box_a and box_b.
|
||||
Args:
|
||||
box_a: (tensor) bounding boxes, Shape: [A,4].
|
||||
box_b: (tensor) bounding boxes, Shape: [B,4].
|
||||
Return:
|
||||
(tensor) intersection area, Shape: [A,B].
|
||||
"""
|
||||
A = box_a.size(0)
|
||||
B = box_b.size(0)
|
||||
max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
|
||||
min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2))
|
||||
inter = torch.clamp((max_xy - min_xy), min=0)
|
||||
return inter[:, :, 0] * inter[:, :, 1]
|
||||
|
||||
|
||||
def jaccard(box_a, box_b):
|
||||
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
|
||||
is simply the intersection over union of two boxes. Here we operate on
|
||||
ground truth boxes and default boxes.
|
||||
E.g.:
|
||||
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
|
||||
Args:
|
||||
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
|
||||
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
|
||||
Return:
|
||||
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
|
||||
"""
|
||||
inter = intersect(box_a, box_b)
|
||||
area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
|
||||
area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
|
||||
union = area_a + area_b - inter
|
||||
return inter / union # [A,B]
|
||||
|
||||
|
||||
def matrix_iou(a, b):
|
||||
"""
|
||||
return iou of a and b, numpy version for data augenmentation
|
||||
"""
|
||||
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
||||
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
||||
|
||||
area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
|
||||
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
||||
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
|
||||
return area_i / (area_a[:, np.newaxis] + area_b - area_i)
|
||||
|
||||
|
||||
def matrix_iof(a, b):
|
||||
"""
|
||||
return iof of a and b, numpy version for data augenmentation
|
||||
"""
|
||||
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
|
||||
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
|
||||
|
||||
area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
|
||||
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
|
||||
return area_i / np.maximum(area_a[:, np.newaxis], 1)
|
||||
|
||||
|
||||
def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
|
||||
"""Match each prior box with the ground truth box of the highest jaccard
|
||||
overlap, encode the bounding boxes, then return the matched indices
|
||||
corresponding to both confidence and location preds.
|
||||
Args:
|
||||
threshold: (float) The overlap threshold used when matching boxes.
|
||||
truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].
|
||||
priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
|
||||
variances: (tensor) Variances corresponding to each prior coord,
|
||||
Shape: [num_priors, 4].
|
||||
labels: (tensor) All the class labels for the image, Shape: [num_obj].
|
||||
landms: (tensor) Ground truth landms, Shape [num_obj, 10].
|
||||
loc_t: (tensor) Tensor to be filled w/ encoded location targets.
|
||||
conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
|
||||
landm_t: (tensor) Tensor to be filled w/ encoded landm targets.
|
||||
idx: (int) current batch index
|
||||
Return:
|
||||
The matched indices corresponding to 1)location 2)confidence
|
||||
3)landm preds.
|
||||
"""
|
||||
# jaccard index
|
||||
overlaps = jaccard(truths, point_form(priors))
|
||||
# (Bipartite Matching)
|
||||
# [1,num_objects] best prior for each ground truth
|
||||
best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
|
||||
|
||||
# ignore hard gt
|
||||
valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
|
||||
best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
|
||||
if best_prior_idx_filter.shape[0] <= 0:
|
||||
loc_t[idx] = 0
|
||||
conf_t[idx] = 0
|
||||
return
|
||||
|
||||
# [1,num_priors] best ground truth for each prior
|
||||
best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
|
||||
best_truth_idx.squeeze_(0)
|
||||
best_truth_overlap.squeeze_(0)
|
||||
best_prior_idx.squeeze_(1)
|
||||
best_prior_idx_filter.squeeze_(1)
|
||||
best_prior_overlap.squeeze_(1)
|
||||
best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
|
||||
# TODO refactor: index best_prior_idx with long tensor
|
||||
# ensure every gt matches with its prior of max overlap
|
||||
for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes
|
||||
best_truth_idx[best_prior_idx[j]] = j
|
||||
matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
|
||||
conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来
|
||||
conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本
|
||||
loc = encode(matches, priors, variances)
|
||||
|
||||
matches_landm = landms[best_truth_idx]
|
||||
landm = encode_landm(matches_landm, priors, variances)
|
||||
loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
|
||||
conf_t[idx] = conf # [num_priors] top class label for each prior
|
||||
landm_t[idx] = landm
|
||||
|
||||
|
||||
def encode(matched, priors, variances):
|
||||
"""Encode the variances from the priorbox layers into the ground truth boxes
|
||||
we have matched (based on jaccard overlap) with the prior boxes.
|
||||
Args:
|
||||
matched: (tensor) Coords of ground truth for each prior in point-form
|
||||
Shape: [num_priors, 4].
|
||||
priors: (tensor) Prior boxes in center-offset form
|
||||
Shape: [num_priors,4].
|
||||
variances: (list[float]) Variances of priorboxes
|
||||
Return:
|
||||
encoded boxes (tensor), Shape: [num_priors, 4]
|
||||
"""
|
||||
|
||||
# dist b/t match center and prior's center
|
||||
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
|
||||
# encode variance
|
||||
g_cxcy /= (variances[0] * priors[:, 2:])
|
||||
# match wh / prior wh
|
||||
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
|
||||
g_wh = torch.log(g_wh) / variances[1]
|
||||
# return target for smooth_l1_loss
|
||||
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
|
||||
|
||||
|
||||
def encode_landm(matched, priors, variances):
|
||||
"""Encode the variances from the priorbox layers into the ground truth boxes
|
||||
we have matched (based on jaccard overlap) with the prior boxes.
|
||||
Args:
|
||||
matched: (tensor) Coords of ground truth for each prior in point-form
|
||||
Shape: [num_priors, 10].
|
||||
priors: (tensor) Prior boxes in center-offset form
|
||||
Shape: [num_priors,4].
|
||||
variances: (list[float]) Variances of priorboxes
|
||||
Return:
|
||||
encoded landm (tensor), Shape: [num_priors, 10]
|
||||
"""
|
||||
|
||||
# dist b/t match center and prior's center
|
||||
matched = torch.reshape(matched, (matched.size(0), 5, 2))
|
||||
priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
|
||||
priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
|
||||
priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
|
||||
priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
|
||||
priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
|
||||
g_cxcy = matched[:, :, :2] - priors[:, :, :2]
|
||||
# encode variance
|
||||
g_cxcy /= (variances[0] * priors[:, :, 2:])
|
||||
# g_cxcy /= priors[:, :, 2:]
|
||||
g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
|
||||
# return target for smooth_l1_loss
|
||||
return g_cxcy
|
||||
|
||||
|
||||
# Adapted from https://github.com/Hakuyume/chainer-ssd
|
||||
def decode(loc, priors, variances):
|
||||
"""Decode locations from predictions using priors to undo
|
||||
the encoding we did for offset regression at train time.
|
||||
Args:
|
||||
loc (tensor): location predictions for loc layers,
|
||||
Shape: [num_priors,4]
|
||||
priors (tensor): Prior boxes in center-offset form.
|
||||
Shape: [num_priors,4].
|
||||
variances: (list[float]) Variances of priorboxes
|
||||
Return:
|
||||
decoded bounding box predictions
|
||||
"""
|
||||
|
||||
boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
|
||||
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
|
||||
boxes[:, :2] -= boxes[:, 2:] / 2
|
||||
boxes[:, 2:] += boxes[:, :2]
|
||||
return boxes
|
||||
|
||||
|
||||
def decode_landm(pre, priors, variances):
|
||||
"""Decode landm from predictions using priors to undo
|
||||
the encoding we did for offset regression at train time.
|
||||
Args:
|
||||
pre (tensor): landm predictions for loc layers,
|
||||
Shape: [num_priors,10]
|
||||
priors (tensor): Prior boxes in center-offset form.
|
||||
Shape: [num_priors,4].
|
||||
variances: (list[float]) Variances of priorboxes
|
||||
Return:
|
||||
decoded landm predictions
|
||||
"""
|
||||
tmp = (
|
||||
priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
|
||||
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
|
||||
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
|
||||
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
|
||||
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
|
||||
)
|
||||
landms = torch.cat(tmp, dim=1)
|
||||
return landms
|
||||
|
||||
|
||||
def batched_decode(b_loc, priors, variances):
|
||||
"""Decode locations from predictions using priors to undo
|
||||
the encoding we did for offset regression at train time.
|
||||
Args:
|
||||
b_loc (tensor): location predictions for loc layers,
|
||||
Shape: [num_batches,num_priors,4]
|
||||
priors (tensor): Prior boxes in center-offset form.
|
||||
Shape: [1,num_priors,4].
|
||||
variances: (list[float]) Variances of priorboxes
|
||||
Return:
|
||||
decoded bounding box predictions
|
||||
"""
|
||||
boxes = (
|
||||
priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:],
|
||||
priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]),
|
||||
)
|
||||
boxes = torch.cat(boxes, dim=2)
|
||||
|
||||
boxes[:, :, :2] -= boxes[:, :, 2:] / 2
|
||||
boxes[:, :, 2:] += boxes[:, :, :2]
|
||||
return boxes
|
||||
|
||||
|
||||
def batched_decode_landm(pre, priors, variances):
|
||||
"""Decode landm from predictions using priors to undo
|
||||
the encoding we did for offset regression at train time.
|
||||
Args:
|
||||
pre (tensor): landm predictions for loc layers,
|
||||
Shape: [num_batches,num_priors,10]
|
||||
priors (tensor): Prior boxes in center-offset form.
|
||||
Shape: [1,num_priors,4].
|
||||
variances: (list[float]) Variances of priorboxes
|
||||
Return:
|
||||
decoded landm predictions
|
||||
"""
|
||||
landms = (
|
||||
priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:],
|
||||
priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:],
|
||||
priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:],
|
||||
priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:],
|
||||
priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:],
|
||||
)
|
||||
landms = torch.cat(landms, dim=2)
|
||||
return landms
|
||||
|
||||
|
||||
def log_sum_exp(x):
|
||||
"""Utility function for computing log_sum_exp while determining
|
||||
This will be used to determine unaveraged confidence loss across
|
||||
all examples in a batch.
|
||||
Args:
|
||||
x (Variable(tensor)): conf_preds from conf layers
|
||||
"""
|
||||
x_max = x.data.max()
|
||||
return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max
|
||||
|
||||
|
||||
# Original author: Francisco Massa:
|
||||
# https://github.com/fmassa/object-detection.torch
|
||||
# Ported to PyTorch by Max deGroot (02/01/2017)
|
||||
def nms(boxes, scores, overlap=0.5, top_k=200):
|
||||
"""Apply non-maximum suppression at test time to avoid detecting too many
|
||||
overlapping bounding boxes for a given object.
|
||||
Args:
|
||||
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
|
||||
scores: (tensor) The class predscores for the img, Shape:[num_priors].
|
||||
overlap: (float) The overlap thresh for suppressing unnecessary boxes.
|
||||
top_k: (int) The Maximum number of box preds to consider.
|
||||
Return:
|
||||
The indices of the kept boxes with respect to num_priors.
|
||||
"""
|
||||
|
||||
keep = torch.Tensor(scores.size(0)).fill_(0).long()
|
||||
if boxes.numel() == 0:
|
||||
return keep
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2]
|
||||
y2 = boxes[:, 3]
|
||||
area = torch.mul(x2 - x1, y2 - y1)
|
||||
v, idx = scores.sort(0) # sort in ascending order
|
||||
# I = I[v >= 0.01]
|
||||
idx = idx[-top_k:] # indices of the top-k largest vals
|
||||
xx1 = boxes.new()
|
||||
yy1 = boxes.new()
|
||||
xx2 = boxes.new()
|
||||
yy2 = boxes.new()
|
||||
w = boxes.new()
|
||||
h = boxes.new()
|
||||
|
||||
# keep = torch.Tensor()
|
||||
count = 0
|
||||
while idx.numel() > 0:
|
||||
i = idx[-1] # index of current largest val
|
||||
# keep.append(i)
|
||||
keep[count] = i
|
||||
count += 1
|
||||
if idx.size(0) == 1:
|
||||
break
|
||||
idx = idx[:-1] # remove kept element from view
|
||||
# load bboxes of next highest vals
|
||||
torch.index_select(x1, 0, idx, out=xx1)
|
||||
torch.index_select(y1, 0, idx, out=yy1)
|
||||
torch.index_select(x2, 0, idx, out=xx2)
|
||||
torch.index_select(y2, 0, idx, out=yy2)
|
||||
# store element-wise max with next highest score
|
||||
xx1 = torch.clamp(xx1, min=x1[i])
|
||||
yy1 = torch.clamp(yy1, min=y1[i])
|
||||
xx2 = torch.clamp(xx2, max=x2[i])
|
||||
yy2 = torch.clamp(yy2, max=y2[i])
|
||||
w.resize_as_(xx2)
|
||||
h.resize_as_(yy2)
|
||||
w = xx2 - xx1
|
||||
h = yy2 - yy1
|
||||
# check sizes of xx1 and xx2.. after each iteration
|
||||
w = torch.clamp(w, min=0.0)
|
||||
h = torch.clamp(h, min=0.0)
|
||||
inter = w * h
|
||||
# IoU = i / (area(a) + area(b) - i)
|
||||
rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
|
||||
union = (rem_areas - inter) + area[i]
|
||||
IoU = inter / union # store result in iou
|
||||
# keep only elements with an IoU <= overlap
|
||||
idx = idx[IoU.le(overlap)]
|
||||
return keep, count
|
||||
Reference in New Issue
Block a user