remove gfpgan dep
This commit is contained in:
419
iopaint/plugins/facexlib/detection/retinaface.py
Normal file
419
iopaint/plugins/facexlib/detection/retinaface.py
Normal file
@@ -0,0 +1,419 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from PIL import Image
|
||||
from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
|
||||
|
||||
from .align_trans import get_reference_facial_points, warp_and_crop_face
|
||||
from .retinaface_net import (
|
||||
FPN,
|
||||
SSH,
|
||||
MobileNetV1,
|
||||
make_bbox_head,
|
||||
make_class_head,
|
||||
make_landmark_head,
|
||||
)
|
||||
from .retinaface_utils import (
|
||||
PriorBox,
|
||||
batched_decode,
|
||||
batched_decode_landm,
|
||||
decode,
|
||||
decode_landm,
|
||||
py_cpu_nms,
|
||||
)
|
||||
|
||||
|
||||
def generate_config(network_name):
|
||||
cfg_mnet = {
|
||||
"name": "mobilenet0.25",
|
||||
"min_sizes": [[16, 32], [64, 128], [256, 512]],
|
||||
"steps": [8, 16, 32],
|
||||
"variance": [0.1, 0.2],
|
||||
"clip": False,
|
||||
"loc_weight": 2.0,
|
||||
"gpu_train": True,
|
||||
"batch_size": 32,
|
||||
"ngpu": 1,
|
||||
"epoch": 250,
|
||||
"decay1": 190,
|
||||
"decay2": 220,
|
||||
"image_size": 640,
|
||||
"return_layers": {"stage1": 1, "stage2": 2, "stage3": 3},
|
||||
"in_channel": 32,
|
||||
"out_channel": 64,
|
||||
}
|
||||
|
||||
cfg_re50 = {
|
||||
"name": "Resnet50",
|
||||
"min_sizes": [[16, 32], [64, 128], [256, 512]],
|
||||
"steps": [8, 16, 32],
|
||||
"variance": [0.1, 0.2],
|
||||
"clip": False,
|
||||
"loc_weight": 2.0,
|
||||
"gpu_train": True,
|
||||
"batch_size": 24,
|
||||
"ngpu": 4,
|
||||
"epoch": 100,
|
||||
"decay1": 70,
|
||||
"decay2": 90,
|
||||
"image_size": 840,
|
||||
"return_layers": {"layer2": 1, "layer3": 2, "layer4": 3},
|
||||
"in_channel": 256,
|
||||
"out_channel": 256,
|
||||
}
|
||||
|
||||
if network_name == "mobile0.25":
|
||||
return cfg_mnet
|
||||
elif network_name == "resnet50":
|
||||
return cfg_re50
|
||||
else:
|
||||
raise NotImplementedError(f"network_name={network_name}")
|
||||
|
||||
|
||||
class RetinaFace(nn.Module):
|
||||
def __init__(self, network_name="resnet50", half=False, phase="test", device=None):
|
||||
self.device = (
|
||||
torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
if device is None
|
||||
else device
|
||||
)
|
||||
|
||||
super(RetinaFace, self).__init__()
|
||||
self.half_inference = half
|
||||
cfg = generate_config(network_name)
|
||||
self.backbone = cfg["name"]
|
||||
|
||||
self.model_name = f"retinaface_{network_name}"
|
||||
self.cfg = cfg
|
||||
self.phase = phase
|
||||
self.target_size, self.max_size = 1600, 2150
|
||||
self.resize, self.scale, self.scale1 = 1.0, None, None
|
||||
self.mean_tensor = torch.tensor(
|
||||
[[[[104.0]], [[117.0]], [[123.0]]]], device=self.device
|
||||
)
|
||||
self.reference = get_reference_facial_points(default_square=True)
|
||||
# Build network.
|
||||
backbone = None
|
||||
if cfg["name"] == "mobilenet0.25":
|
||||
backbone = MobileNetV1()
|
||||
self.body = IntermediateLayerGetter(backbone, cfg["return_layers"])
|
||||
elif cfg["name"] == "Resnet50":
|
||||
import torchvision.models as models
|
||||
|
||||
backbone = models.resnet50(pretrained=False)
|
||||
self.body = IntermediateLayerGetter(backbone, cfg["return_layers"])
|
||||
|
||||
in_channels_stage2 = cfg["in_channel"]
|
||||
in_channels_list = [
|
||||
in_channels_stage2 * 2,
|
||||
in_channels_stage2 * 4,
|
||||
in_channels_stage2 * 8,
|
||||
]
|
||||
|
||||
out_channels = cfg["out_channel"]
|
||||
self.fpn = FPN(in_channels_list, out_channels)
|
||||
self.ssh1 = SSH(out_channels, out_channels)
|
||||
self.ssh2 = SSH(out_channels, out_channels)
|
||||
self.ssh3 = SSH(out_channels, out_channels)
|
||||
|
||||
self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg["out_channel"])
|
||||
self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg["out_channel"])
|
||||
self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg["out_channel"])
|
||||
|
||||
self.to(self.device)
|
||||
self.eval()
|
||||
if self.half_inference:
|
||||
self.half()
|
||||
|
||||
def forward(self, inputs):
|
||||
out = self.body(inputs)
|
||||
|
||||
if self.backbone == "mobilenet0.25" or self.backbone == "Resnet50":
|
||||
out = list(out.values())
|
||||
# FPN
|
||||
fpn = self.fpn(out)
|
||||
|
||||
# SSH
|
||||
feature1 = self.ssh1(fpn[0])
|
||||
feature2 = self.ssh2(fpn[1])
|
||||
feature3 = self.ssh3(fpn[2])
|
||||
features = [feature1, feature2, feature3]
|
||||
|
||||
bbox_regressions = torch.cat(
|
||||
[self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1
|
||||
)
|
||||
classifications = torch.cat(
|
||||
[self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1
|
||||
)
|
||||
tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
|
||||
ldm_regressions = torch.cat(tmp, dim=1)
|
||||
|
||||
if self.phase == "train":
|
||||
output = (bbox_regressions, classifications, ldm_regressions)
|
||||
else:
|
||||
output = (
|
||||
bbox_regressions,
|
||||
F.softmax(classifications, dim=-1),
|
||||
ldm_regressions,
|
||||
)
|
||||
return output
|
||||
|
||||
def __detect_faces(self, inputs):
|
||||
# get scale
|
||||
height, width = inputs.shape[2:]
|
||||
self.scale = torch.tensor(
|
||||
[width, height, width, height], dtype=torch.float32, device=self.device
|
||||
)
|
||||
tmp = [
|
||||
width,
|
||||
height,
|
||||
width,
|
||||
height,
|
||||
width,
|
||||
height,
|
||||
width,
|
||||
height,
|
||||
width,
|
||||
height,
|
||||
]
|
||||
self.scale1 = torch.tensor(tmp, dtype=torch.float32, device=self.device)
|
||||
|
||||
# forawrd
|
||||
inputs = inputs.to(self.device)
|
||||
if self.half_inference:
|
||||
inputs = inputs.half()
|
||||
loc, conf, landmarks = self(inputs)
|
||||
|
||||
# get priorbox
|
||||
priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
|
||||
priors = priorbox.forward().to(self.device)
|
||||
|
||||
return loc, conf, landmarks, priors
|
||||
|
||||
# single image detection
|
||||
def transform(self, image, use_origin_size):
|
||||
# convert to opencv format
|
||||
if isinstance(image, Image.Image):
|
||||
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
|
||||
image = image.astype(np.float32)
|
||||
|
||||
# testing scale
|
||||
im_size_min = np.min(image.shape[0:2])
|
||||
im_size_max = np.max(image.shape[0:2])
|
||||
resize = float(self.target_size) / float(im_size_min)
|
||||
|
||||
# prevent bigger axis from being more than max_size
|
||||
if np.round(resize * im_size_max) > self.max_size:
|
||||
resize = float(self.max_size) / float(im_size_max)
|
||||
resize = 1 if use_origin_size else resize
|
||||
|
||||
# resize
|
||||
if resize != 1:
|
||||
image = cv2.resize(
|
||||
image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR
|
||||
)
|
||||
|
||||
# convert to torch.tensor format
|
||||
# image -= (104, 117, 123)
|
||||
image = image.transpose(2, 0, 1)
|
||||
image = torch.from_numpy(image).unsqueeze(0)
|
||||
|
||||
return image, resize
|
||||
|
||||
def detect_faces(
|
||||
self,
|
||||
image,
|
||||
conf_threshold=0.8,
|
||||
nms_threshold=0.4,
|
||||
use_origin_size=True,
|
||||
):
|
||||
image, self.resize = self.transform(image, use_origin_size)
|
||||
image = image.to(self.device)
|
||||
if self.half_inference:
|
||||
image = image.half()
|
||||
image = image - self.mean_tensor
|
||||
|
||||
loc, conf, landmarks, priors = self.__detect_faces(image)
|
||||
|
||||
boxes = decode(loc.data.squeeze(0), priors.data, self.cfg["variance"])
|
||||
boxes = boxes * self.scale / self.resize
|
||||
boxes = boxes.cpu().numpy()
|
||||
|
||||
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
|
||||
|
||||
landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg["variance"])
|
||||
landmarks = landmarks * self.scale1 / self.resize
|
||||
landmarks = landmarks.cpu().numpy()
|
||||
|
||||
# ignore low scores
|
||||
inds = np.where(scores > conf_threshold)[0]
|
||||
boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
|
||||
|
||||
# sort
|
||||
order = scores.argsort()[::-1]
|
||||
boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
|
||||
|
||||
# do NMS
|
||||
bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(
|
||||
np.float32, copy=False
|
||||
)
|
||||
keep = py_cpu_nms(bounding_boxes, nms_threshold)
|
||||
bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
|
||||
# self.t['forward_pass'].toc()
|
||||
# print(self.t['forward_pass'].average_time)
|
||||
# import sys
|
||||
# sys.stdout.flush()
|
||||
return np.concatenate((bounding_boxes, landmarks), axis=1)
|
||||
|
||||
def __align_multi(self, image, boxes, landmarks, limit=None):
|
||||
if len(boxes) < 1:
|
||||
return [], []
|
||||
|
||||
if limit:
|
||||
boxes = boxes[:limit]
|
||||
landmarks = landmarks[:limit]
|
||||
|
||||
faces = []
|
||||
for landmark in landmarks:
|
||||
facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
|
||||
|
||||
warped_face = warp_and_crop_face(
|
||||
np.array(image), facial5points, self.reference, crop_size=(112, 112)
|
||||
)
|
||||
faces.append(warped_face)
|
||||
|
||||
return np.concatenate((boxes, landmarks), axis=1), faces
|
||||
|
||||
def align_multi(self, img, conf_threshold=0.8, limit=None):
|
||||
rlt = self.detect_faces(img, conf_threshold=conf_threshold)
|
||||
boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
|
||||
|
||||
return self.__align_multi(img, boxes, landmarks, limit)
|
||||
|
||||
# batched detection
|
||||
def batched_transform(self, frames, use_origin_size):
|
||||
"""
|
||||
Arguments:
|
||||
frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
|
||||
type=np.float32, BGR format).
|
||||
use_origin_size: whether to use origin size.
|
||||
"""
|
||||
from_PIL = True if isinstance(frames[0], Image.Image) else False
|
||||
|
||||
# convert to opencv format
|
||||
if from_PIL:
|
||||
frames = [
|
||||
cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames
|
||||
]
|
||||
frames = np.asarray(frames, dtype=np.float32)
|
||||
|
||||
# testing scale
|
||||
im_size_min = np.min(frames[0].shape[0:2])
|
||||
im_size_max = np.max(frames[0].shape[0:2])
|
||||
resize = float(self.target_size) / float(im_size_min)
|
||||
|
||||
# prevent bigger axis from being more than max_size
|
||||
if np.round(resize * im_size_max) > self.max_size:
|
||||
resize = float(self.max_size) / float(im_size_max)
|
||||
resize = 1 if use_origin_size else resize
|
||||
|
||||
# resize
|
||||
if resize != 1:
|
||||
if not from_PIL:
|
||||
frames = F.interpolate(frames, scale_factor=resize)
|
||||
else:
|
||||
frames = [
|
||||
cv2.resize(
|
||||
frame,
|
||||
None,
|
||||
None,
|
||||
fx=resize,
|
||||
fy=resize,
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
)
|
||||
for frame in frames
|
||||
]
|
||||
|
||||
# convert to torch.tensor format
|
||||
if not from_PIL:
|
||||
frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
|
||||
else:
|
||||
frames = frames.transpose((0, 3, 1, 2))
|
||||
frames = torch.from_numpy(frames)
|
||||
|
||||
return frames, resize
|
||||
|
||||
def batched_detect_faces(
|
||||
self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True
|
||||
):
|
||||
"""
|
||||
Arguments:
|
||||
frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
|
||||
type=np.uint8, BGR format).
|
||||
conf_threshold: confidence threshold.
|
||||
nms_threshold: nms threshold.
|
||||
use_origin_size: whether to use origin size.
|
||||
Returns:
|
||||
final_bounding_boxes: list of np.array ([n_boxes, 5],
|
||||
type=np.float32).
|
||||
final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
|
||||
"""
|
||||
# self.t['forward_pass'].tic()
|
||||
frames, self.resize = self.batched_transform(frames, use_origin_size)
|
||||
frames = frames.to(self.device)
|
||||
frames = frames - self.mean_tensor
|
||||
|
||||
b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
|
||||
|
||||
final_bounding_boxes, final_landmarks = [], []
|
||||
|
||||
# decode
|
||||
priors = priors.unsqueeze(0)
|
||||
b_loc = (
|
||||
batched_decode(b_loc, priors, self.cfg["variance"])
|
||||
* self.scale
|
||||
/ self.resize
|
||||
)
|
||||
b_landmarks = (
|
||||
batched_decode_landm(b_landmarks, priors, self.cfg["variance"])
|
||||
* self.scale1
|
||||
/ self.resize
|
||||
)
|
||||
b_conf = b_conf[:, :, 1]
|
||||
|
||||
# index for selection
|
||||
b_indice = b_conf > conf_threshold
|
||||
|
||||
# concat
|
||||
b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
|
||||
|
||||
for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
|
||||
# ignore low scores
|
||||
pred, landm = pred[inds, :], landm[inds, :]
|
||||
if pred.shape[0] == 0:
|
||||
final_bounding_boxes.append(np.array([], dtype=np.float32))
|
||||
final_landmarks.append(np.array([], dtype=np.float32))
|
||||
continue
|
||||
|
||||
# sort
|
||||
# order = score.argsort(descending=True)
|
||||
# box, landm, score = box[order], landm[order], score[order]
|
||||
|
||||
# to CPU
|
||||
bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
|
||||
|
||||
# NMS
|
||||
keep = py_cpu_nms(bounding_boxes, nms_threshold)
|
||||
bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
|
||||
|
||||
# append
|
||||
final_bounding_boxes.append(bounding_boxes)
|
||||
final_landmarks.append(landmarks)
|
||||
# self.t['forward_pass'].toc(average=True)
|
||||
# self.batch_time += self.t['forward_pass'].diff
|
||||
# self.total_frame += len(frames)
|
||||
# print(self.batch_time / self.total_frame)
|
||||
|
||||
return final_bounding_boxes, final_landmarks
|
||||
Reference in New Issue
Block a user