remove gfpgan dep

This commit is contained in:
Qing
2024-08-12 11:02:55 +08:00
parent ffdf5e06e1
commit 60b1411d6b
27 changed files with 4745 additions and 37 deletions

View File

@@ -0,0 +1,7 @@
from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back
from .misc import img2tensor, load_file_from_url, scandir
__all__ = [
'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url', 'paste_face_back',
'img2tensor', 'scandir'
]

View File

@@ -0,0 +1,473 @@
import cv2
import numpy as np
import os
import torch
from torchvision.transforms.functional import normalize
from ..detection import init_detection_model
from ..parsing import init_parsing_model
from ..utils.misc import img2tensor, imwrite
def get_largest_face(det_faces, h, w):
def get_location(val, length):
if val < 0:
return 0
elif val > length:
return length
else:
return val
face_areas = []
for det_face in det_faces:
left = get_location(det_face[0], w)
right = get_location(det_face[2], w)
top = get_location(det_face[1], h)
bottom = get_location(det_face[3], h)
face_area = (right - left) * (bottom - top)
face_areas.append(face_area)
largest_idx = face_areas.index(max(face_areas))
return det_faces[largest_idx], largest_idx
def get_center_face(det_faces, h=0, w=0, center=None):
if center is not None:
center = np.array(center)
else:
center = np.array([w / 2, h / 2])
center_dist = []
for det_face in det_faces:
face_center = np.array(
[(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2]
)
dist = np.linalg.norm(face_center - center)
center_dist.append(dist)
center_idx = center_dist.index(min(center_dist))
return det_faces[center_idx], center_idx
class FaceRestoreHelper(object):
"""Helper for the face restoration pipeline (base class)."""
def __init__(
self,
upscale_factor,
face_size=512,
crop_ratio=(1, 1),
det_model="retinaface_resnet50",
save_ext="png",
template_3points=False,
pad_blur=False,
use_parse=False,
device=None,
model_rootpath=None,
):
self.template_3points = template_3points # improve robustness
self.upscale_factor = upscale_factor
# the cropped face ratio based on the square face
self.crop_ratio = crop_ratio # (h, w)
assert (
self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1
), "crop ration only supports >=1"
self.face_size = (
int(face_size * self.crop_ratio[1]),
int(face_size * self.crop_ratio[0]),
)
if self.template_3points:
self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
else:
# standard 5 landmarks for FFHQ faces with 512 x 512
self.face_template = np.array(
[
[192.98138, 239.94708],
[318.90277, 240.1936],
[256.63416, 314.01935],
[201.26117, 371.41043],
[313.08905, 371.15118],
]
)
self.face_template = self.face_template * (face_size / 512.0)
if self.crop_ratio[0] > 1:
self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
if self.crop_ratio[1] > 1:
self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
self.save_ext = save_ext
self.pad_blur = pad_blur
if self.pad_blur is True:
self.template_3points = False
self.all_landmarks_5 = []
self.det_faces = []
self.affine_matrices = []
self.inverse_affine_matrices = []
self.cropped_faces = []
self.restored_faces = []
self.pad_input_imgs = []
if device is None:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
self.device = device
# init face detection model
self.face_det = init_detection_model(
det_model, half=False, device=self.device, model_rootpath=model_rootpath
)
# init face parsing model
self.use_parse = use_parse
self.face_parse = init_parsing_model(
model_name="parsenet", device=self.device, model_rootpath=model_rootpath
)
def set_upscale_factor(self, upscale_factor):
self.upscale_factor = upscale_factor
def read_image(self, img):
"""img can be image path or cv2 loaded image."""
# self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
if isinstance(img, str):
img = cv2.imread(img)
if np.max(img) > 256: # 16-bit image
img = img / 65535 * 255
if len(img.shape) == 2: # gray image
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif img.shape[2] == 4: # RGBA image with alpha channel
img = img[:, :, 0:3]
self.input_img = img
def get_face_landmarks_5(
self,
only_keep_largest=False,
only_center_face=False,
resize=None,
blur_ratio=0.01,
eye_dist_threshold=None,
):
if resize is None:
scale = 1
input_img = self.input_img
else:
h, w = self.input_img.shape[0:2]
scale = min(h, w) / resize
h, w = int(h / scale), int(w / scale)
input_img = cv2.resize(
self.input_img, (w, h), interpolation=cv2.INTER_LANCZOS4
)
with torch.no_grad():
bboxes = self.face_det.detect_faces(input_img, 0.97) * scale
for bbox in bboxes:
# remove faces with too small eye distance: side faces or too small faces
eye_dist = np.linalg.norm([bbox[5] - bbox[7], bbox[6] - bbox[8]])
if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
continue
if self.template_3points:
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
else:
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
self.all_landmarks_5.append(landmark)
self.det_faces.append(bbox[0:5])
if len(self.det_faces) == 0:
return 0
if only_keep_largest:
h, w, _ = self.input_img.shape
self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
elif only_center_face:
h, w, _ = self.input_img.shape
self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
# pad blurry images
if self.pad_blur:
self.pad_input_imgs = []
for landmarks in self.all_landmarks_5:
# get landmarks
eye_left = landmarks[0, :]
eye_right = landmarks[1, :]
eye_avg = (eye_left + eye_right) * 0.5
mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_avg - eye_avg
# Get the oriented crop rectangle
# x: half width of the oriented crop rectangle
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
# norm with the hypotenuse: get the direction
x /= np.hypot(*x) # get the hypotenuse of a right triangle
rect_scale = 1.5
x *= max(
np.hypot(*eye_to_eye) * 2.0 * rect_scale,
np.hypot(*eye_to_mouth) * 1.8 * rect_scale,
)
# y: half height of the oriented crop rectangle
y = np.flipud(x) * [-1, 1]
# c: center
c = eye_avg + eye_to_mouth * 0.1
# quad: (left_top, left_bottom, right_bottom, right_top)
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
# qsize: side length of the square
qsize = np.hypot(*x) * 2
border = max(int(np.rint(qsize * 0.1)), 3)
# get pad
# pad: (width_left, height_top, width_right, height_bottom)
pad = (
int(np.floor(min(quad[:, 0]))),
int(np.floor(min(quad[:, 1]))),
int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))),
)
pad = [
max(-pad[0] + border, 1),
max(-pad[1] + border, 1),
max(pad[2] - self.input_img.shape[0] + border, 1),
max(pad[3] - self.input_img.shape[1] + border, 1),
]
if max(pad) > 1:
# pad image
pad_img = np.pad(
self.input_img,
((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)),
"reflect",
)
# modify landmark coords
landmarks[:, 0] += pad[0]
landmarks[:, 1] += pad[1]
# blur pad images
h, w, _ = pad_img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(
1.0
- np.minimum(
np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]
),
1.0
- np.minimum(
np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]
),
)
blur = int(qsize * blur_ratio)
if blur % 2 == 0:
blur += 1
blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
# blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
pad_img = pad_img.astype("float32")
pad_img += (blur_img - pad_img) * np.clip(
mask * 3.0 + 1.0, 0.0, 1.0
)
pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(
mask, 0.0, 1.0
)
pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
self.pad_input_imgs.append(pad_img)
else:
self.pad_input_imgs.append(np.copy(self.input_img))
return len(self.all_landmarks_5)
def align_warp_face(self, save_cropped_path=None, border_mode="constant"):
"""Align and warp faces with face template."""
if self.pad_blur:
assert (
len(self.pad_input_imgs) == len(self.all_landmarks_5)
), f"Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}"
for idx, landmark in enumerate(self.all_landmarks_5):
# use 5 landmarks to get affine matrix
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(
landmark, self.face_template, method=cv2.LMEDS
)[0]
self.affine_matrices.append(affine_matrix)
# warp and crop faces
if border_mode == "constant":
border_mode = cv2.BORDER_CONSTANT
elif border_mode == "reflect101":
border_mode = cv2.BORDER_REFLECT101
elif border_mode == "reflect":
border_mode = cv2.BORDER_REFLECT
if self.pad_blur:
input_img = self.pad_input_imgs[idx]
else:
input_img = self.input_img
cropped_face = cv2.warpAffine(
input_img,
affine_matrix,
self.face_size,
borderMode=border_mode,
borderValue=(135, 133, 132),
) # gray
self.cropped_faces.append(cropped_face)
# save the cropped face
if save_cropped_path is not None:
path = os.path.splitext(save_cropped_path)[0]
save_path = f"{path}_{idx:02d}.{self.save_ext}"
imwrite(cropped_face, save_path)
def get_inverse_affine(self, save_inverse_affine_path=None):
"""Get inverse affine matrix."""
for idx, affine_matrix in enumerate(self.affine_matrices):
inverse_affine = cv2.invertAffineTransform(affine_matrix)
inverse_affine *= self.upscale_factor
self.inverse_affine_matrices.append(inverse_affine)
# save inverse affine matrices
if save_inverse_affine_path is not None:
path, _ = os.path.splitext(save_inverse_affine_path)
save_path = f"{path}_{idx:02d}.pth"
torch.save(inverse_affine, save_path)
def add_restored_face(self, face):
self.restored_faces.append(face)
def paste_faces_to_input_image(self, save_path=None, upsample_img=None):
h, w, _ = self.input_img.shape
h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
if upsample_img is None:
# simply resize the background
upsample_img = cv2.resize(
self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4
)
else:
upsample_img = cv2.resize(
upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4
)
assert len(self.restored_faces) == len(
self.inverse_affine_matrices
), "length of restored_faces and affine_matrices are different."
for restored_face, inverse_affine in zip(
self.restored_faces, self.inverse_affine_matrices
):
# Add an offset to inverse affine matrix, for more precise back alignment
if self.upscale_factor > 1:
extra_offset = 0.5 * self.upscale_factor
else:
extra_offset = 0
inverse_affine[:, 2] += extra_offset
inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
if self.use_parse:
# inference
face_input = cv2.resize(
restored_face, (512, 512), interpolation=cv2.INTER_LINEAR
)
face_input = img2tensor(
face_input.astype("float32") / 255.0, bgr2rgb=True, float32=True
)
normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
face_input = torch.unsqueeze(face_input, 0).to(self.device)
with torch.no_grad():
out = self.face_parse(face_input)[0]
out = out.argmax(dim=1).squeeze().cpu().numpy()
mask = np.zeros(out.shape)
MASK_COLORMAP = [
0,
255,
255,
255,
255,
255,
255,
255,
255,
255,
255,
255,
255,
255,
0,
255,
0,
0,
0,
]
for idx, color in enumerate(MASK_COLORMAP):
mask[out == idx] = color
# blur the mask
mask = cv2.GaussianBlur(mask, (101, 101), 11)
mask = cv2.GaussianBlur(mask, (101, 101), 11)
# remove the black borders
thres = 10
mask[:thres, :] = 0
mask[-thres:, :] = 0
mask[:, :thres] = 0
mask[:, -thres:] = 0
mask = mask / 255.0
mask = cv2.resize(mask, restored_face.shape[:2])
mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up), flags=3)
inv_soft_mask = mask[:, :, None]
pasted_face = inv_restored
else: # use square parse maps
mask = np.ones(self.face_size, dtype=np.float32)
inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
# remove the black borders
inv_mask_erosion = cv2.erode(
inv_mask,
np.ones(
(int(2 * self.upscale_factor), int(2 * self.upscale_factor)),
np.uint8,
),
)
pasted_face = inv_mask_erosion[:, :, None] * inv_restored
total_face_area = np.sum(inv_mask_erosion) # // 3
# compute the fusion edge based on the area of face
w_edge = int(total_face_area**0.5) // 20
erosion_radius = w_edge * 2
inv_mask_center = cv2.erode(
inv_mask_erosion,
np.ones((erosion_radius, erosion_radius), np.uint8),
)
blur_size = w_edge * 2
inv_soft_mask = cv2.GaussianBlur(
inv_mask_center, (blur_size + 1, blur_size + 1), 0
)
if len(upsample_img.shape) == 2: # upsample_img is gray image
upsample_img = upsample_img[:, :, None]
inv_soft_mask = inv_soft_mask[:, :, None]
if (
len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4
): # alpha channel
alpha = upsample_img[:, :, 3:]
upsample_img = (
inv_soft_mask * pasted_face
+ (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
)
upsample_img = np.concatenate((upsample_img, alpha), axis=2)
else:
upsample_img = (
inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
)
if np.max(upsample_img) > 256: # 16-bit image
upsample_img = upsample_img.astype(np.uint16)
else:
upsample_img = upsample_img.astype(np.uint8)
if save_path is not None:
path = os.path.splitext(save_path)[0]
save_path = f"{path}.{self.save_ext}"
imwrite(upsample_img, save_path)
return upsample_img
def clean_all(self):
self.all_landmarks_5 = []
self.restored_faces = []
self.affine_matrices = []
self.cropped_faces = []
self.inverse_affine_matrices = []
self.det_faces = []
self.pad_input_imgs = []

View File

@@ -0,0 +1,208 @@
import cv2
import numpy as np
import torch
def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
left, top, right, bot = bbox
width = right - left
height = bot - top
if preserve_aspect:
width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
else:
width_increase = height_increase = increase_area
left = int(left - width_increase * width)
top = int(top - height_increase * height)
right = int(right + width_increase * width)
bot = int(bot + height_increase * height)
return (left, top, right, bot)
def get_valid_bboxes(bboxes, h, w):
left = max(bboxes[0], 0)
top = max(bboxes[1], 0)
right = min(bboxes[2], w)
bottom = min(bboxes[3], h)
return (left, top, right, bottom)
def align_crop_face_landmarks(img,
landmarks,
output_size,
transform_size=None,
enable_padding=True,
return_inverse_affine=False,
shrink_ratio=(1, 1)):
"""Align and crop face with landmarks.
The output_size and transform_size are based on width. The height is
adjusted based on shrink_ratio_h/shring_ration_w.
Modified from:
https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
Args:
img (Numpy array): Input image.
landmarks (Numpy array): 5 or 68 or 98 landmarks.
output_size (int): Output face size.
transform_size (ing): Transform size. Usually the four time of
output_size.
enable_padding (float): Default: True.
shrink_ratio (float | tuple[float] | list[float]): Shring the whole
face for height and width (crop larger area). Default: (1, 1).
Returns:
(Numpy array): Cropped face.
"""
lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5
if isinstance(shrink_ratio, (float, int)):
shrink_ratio = (shrink_ratio, shrink_ratio)
if transform_size is None:
transform_size = output_size * 4
# Parse landmarks
lm = np.array(landmarks)
if lm.shape[0] == 5 and lm_type == 'retinaface_5':
eye_left = lm[0]
eye_right = lm[1]
mouth_avg = (lm[3] + lm[4]) * 0.5
elif lm.shape[0] == 5 and lm_type == 'dlib_5':
lm_eye_left = lm[2:4]
lm_eye_right = lm[0:2]
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
mouth_avg = lm[4]
elif lm.shape[0] == 68:
lm_eye_left = lm[36:42]
lm_eye_right = lm[42:48]
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
mouth_avg = (lm[48] + lm[54]) * 0.5
elif lm.shape[0] == 98:
lm_eye_left = lm[60:68]
lm_eye_right = lm[68:76]
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
mouth_avg = (lm[76] + lm[82]) * 0.5
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_avg - eye_avg
# Get the oriented crop rectangle
# x: half width of the oriented crop rectangle
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
# norm with the hypotenuse: get the direction
x /= np.hypot(*x) # get the hypotenuse of a right triangle
rect_scale = 1 # TODO: you can edit it to get larger rect
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
# y: half height of the oriented crop rectangle
y = np.flipud(x) * [-1, 1]
x *= shrink_ratio[1] # width
y *= shrink_ratio[0] # height
# c: center
c = eye_avg + eye_to_mouth * 0.1
# quad: (left_top, left_bottom, right_bottom, right_top)
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
# qsize: side length of the square
qsize = np.hypot(*x) * 2
quad_ori = np.copy(quad)
# Shrink, for large face
# TODO: do we really need shrink
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
h, w = img.shape[0:2]
rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
quad /= shrink
qsize /= shrink
# Crop
h, w = img.shape[0:2]
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
img = img[crop[1]:crop[3], crop[0]:crop[2], :]
quad -= crop[0:2]
# Pad
# pad: (width_left, height_top, width_right, height_bottom)
h, w = img.shape[0:2]
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w = img.shape[0:2]
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1],
np.float32(h - 1 - y) / pad[3]))
blur = int(qsize * 0.02)
if blur % 2 == 0:
blur += 1
blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
img = img.astype('float32')
img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = np.clip(img, 0, 255) # float32, [0, 255]
quad += pad[:2]
# Transform use cv2
h_ratio = shrink_ratio[0] / shrink_ratio[1]
dst_h, dst_w = int(transform_size * h_ratio), transform_size
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
cropped_face = cv2.warpAffine(
img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray
if output_size < transform_size:
cropped_face = cv2.resize(
cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)
if return_inverse_affine:
dst_h, dst_w = int(output_size * h_ratio), output_size
template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(
quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
inverse_affine = cv2.invertAffineTransform(affine_matrix)
else:
inverse_affine = None
return cropped_face, inverse_affine
def paste_face_back(img, face, inverse_affine):
h, w = img.shape[0:2]
face_h, face_w = face.shape[0:2]
inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
mask = np.ones((face_h, face_w, 3), dtype=np.float32)
inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
# remove the black borders
inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
inv_restored_remove_border = inv_mask_erosion * inv_restored
total_face_area = np.sum(inv_mask_erosion) // 3
# compute the fusion edge based on the area of face
w_edge = int(total_face_area**0.5) // 20
erosion_radius = w_edge * 2
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
blur_size = w_edge * 2
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
# float32, [0, 255]
return img

View File

@@ -0,0 +1,118 @@
import cv2
import os
import os.path as osp
import torch
from torch.hub import download_url_to_file, get_dir
from urllib.parse import urlparse
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
def imwrite(img, file_path, params=None, auto_mkdir=True):
"""Write image to file.
Args:
img (ndarray): Image array to be written.
file_path (str): Image file path.
params (None or list): Same as opencv's :func:`imwrite` interface.
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
whether to create it automatically.
Returns:
bool: Successful or not.
"""
if auto_mkdir:
dir_name = os.path.abspath(os.path.dirname(file_path))
os.makedirs(dir_name, exist_ok=True)
return cv2.imwrite(file_path, img, params)
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def load_file_from_url(url, model_dir=None, progress=True, file_name=None, save_dir=None):
"""Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
"""
if model_dir is None:
hub_dir = get_dir()
model_dir = os.path.join(hub_dir, 'checkpoints')
if save_dir is None:
save_dir = os.path.join(ROOT_DIR, model_dir)
os.makedirs(save_dir, exist_ok=True)
parts = urlparse(url)
filename = os.path.basename(parts.path)
if file_name is not None:
filename = file_name
cached_file = os.path.abspath(os.path.join(save_dir, filename))
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
return cached_file
def scandir(dir_path, suffix=None, recursive=False, full_path=False):
"""Scan a directory to find the interested files.
Args:
dir_path (str): Path of the directory.
suffix (str | tuple(str), optional): File suffix that we are
interested in. Default: None.
recursive (bool, optional): If set to True, recursively scan the
directory. Default: False.
full_path (bool, optional): If set to True, include the dir_path.
Default: False.
Returns:
A generator for all the interested files with relative paths.
"""
if (suffix is not None) and not isinstance(suffix, (str, tuple)):
raise TypeError('"suffix" must be a string or tuple of strings')
root = dir_path
def _scandir(dir_path, suffix, recursive):
for entry in os.scandir(dir_path):
if not entry.name.startswith('.') and entry.is_file():
if full_path:
return_path = entry.path
else:
return_path = osp.relpath(entry.path, root)
if suffix is None:
yield return_path
elif return_path.endswith(suffix):
yield return_path
else:
if recursive:
yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
else:
continue
return _scandir(dir_path, suffix=suffix, recursive=recursive)