update
This commit is contained in:
231
scripts/convert_vae_pt_to_diffusers.py
Normal file
231
scripts/convert_vae_pt_to_diffusers.py
Normal file
@@ -0,0 +1,231 @@
|
||||
import argparse
|
||||
import io
|
||||
|
||||
import requests
|
||||
import torch
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from diffusers import AutoencoderKL
|
||||
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
||||
assign_to_checkpoint,
|
||||
conv_attn_to_linear,
|
||||
create_vae_diffusers_config,
|
||||
renew_vae_attention_paths,
|
||||
renew_vae_resnet_paths,
|
||||
)
|
||||
|
||||
|
||||
def custom_convert_ldm_vae_checkpoint(checkpoint, config):
|
||||
vae_state_dict = checkpoint
|
||||
|
||||
new_checkpoint = {}
|
||||
|
||||
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
||||
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
||||
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
|
||||
"encoder.conv_out.weight"
|
||||
]
|
||||
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
||||
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
|
||||
"encoder.norm_out.weight"
|
||||
]
|
||||
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
|
||||
"encoder.norm_out.bias"
|
||||
]
|
||||
|
||||
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
||||
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
||||
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
|
||||
"decoder.conv_out.weight"
|
||||
]
|
||||
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
||||
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
|
||||
"decoder.norm_out.weight"
|
||||
]
|
||||
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
|
||||
"decoder.norm_out.bias"
|
||||
]
|
||||
|
||||
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
||||
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
||||
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
||||
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
||||
|
||||
# Retrieves the keys for the encoder down blocks only
|
||||
num_down_blocks = len(
|
||||
{
|
||||
".".join(layer.split(".")[:3])
|
||||
for layer in vae_state_dict
|
||||
if "encoder.down" in layer
|
||||
}
|
||||
)
|
||||
down_blocks = {
|
||||
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
|
||||
for layer_id in range(num_down_blocks)
|
||||
}
|
||||
|
||||
# Retrieves the keys for the decoder up blocks only
|
||||
num_up_blocks = len(
|
||||
{
|
||||
".".join(layer.split(".")[:3])
|
||||
for layer in vae_state_dict
|
||||
if "decoder.up" in layer
|
||||
}
|
||||
)
|
||||
up_blocks = {
|
||||
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
|
||||
for layer_id in range(num_up_blocks)
|
||||
}
|
||||
|
||||
for i in range(num_down_blocks):
|
||||
resnets = [
|
||||
key
|
||||
for key in down_blocks[i]
|
||||
if f"down.{i}" in key and f"down.{i}.downsample" not in key
|
||||
]
|
||||
|
||||
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
||||
new_checkpoint[
|
||||
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
|
||||
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
|
||||
new_checkpoint[
|
||||
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
|
||||
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
||||
assign_to_checkpoint(
|
||||
paths,
|
||||
new_checkpoint,
|
||||
vae_state_dict,
|
||||
additional_replacements=[meta_path],
|
||||
config=config,
|
||||
)
|
||||
|
||||
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
||||
num_mid_res_blocks = 2
|
||||
for i in range(1, num_mid_res_blocks + 1):
|
||||
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||||
assign_to_checkpoint(
|
||||
paths,
|
||||
new_checkpoint,
|
||||
vae_state_dict,
|
||||
additional_replacements=[meta_path],
|
||||
config=config,
|
||||
)
|
||||
|
||||
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
||||
paths = renew_vae_attention_paths(mid_attentions)
|
||||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||||
assign_to_checkpoint(
|
||||
paths,
|
||||
new_checkpoint,
|
||||
vae_state_dict,
|
||||
additional_replacements=[meta_path],
|
||||
config=config,
|
||||
)
|
||||
conv_attn_to_linear(new_checkpoint)
|
||||
|
||||
for i in range(num_up_blocks):
|
||||
block_id = num_up_blocks - 1 - i
|
||||
resnets = [
|
||||
key
|
||||
for key in up_blocks[block_id]
|
||||
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
||||
]
|
||||
|
||||
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
||||
new_checkpoint[
|
||||
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
|
||||
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
|
||||
new_checkpoint[
|
||||
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
|
||||
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
||||
assign_to_checkpoint(
|
||||
paths,
|
||||
new_checkpoint,
|
||||
vae_state_dict,
|
||||
additional_replacements=[meta_path],
|
||||
config=config,
|
||||
)
|
||||
|
||||
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
||||
num_mid_res_blocks = 2
|
||||
for i in range(1, num_mid_res_blocks + 1):
|
||||
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
||||
|
||||
paths = renew_vae_resnet_paths(resnets)
|
||||
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
||||
assign_to_checkpoint(
|
||||
paths,
|
||||
new_checkpoint,
|
||||
vae_state_dict,
|
||||
additional_replacements=[meta_path],
|
||||
config=config,
|
||||
)
|
||||
|
||||
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
||||
paths = renew_vae_attention_paths(mid_attentions)
|
||||
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
||||
assign_to_checkpoint(
|
||||
paths,
|
||||
new_checkpoint,
|
||||
vae_state_dict,
|
||||
additional_replacements=[meta_path],
|
||||
config=config,
|
||||
)
|
||||
conv_attn_to_linear(new_checkpoint)
|
||||
return new_checkpoint
|
||||
|
||||
|
||||
def vae_pt_to_vae_diffuser(
|
||||
checkpoint_path: str,
|
||||
output_path: str,
|
||||
):
|
||||
# Only support V1
|
||||
r = requests.get(
|
||||
" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
||||
)
|
||||
io_obj = io.BytesIO(r.content)
|
||||
|
||||
original_config = OmegaConf.load(io_obj)
|
||||
image_size = 512
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
checkpoint = torch.load(checkpoint_path, map_location=device)
|
||||
|
||||
# Convert the VAE model.
|
||||
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
|
||||
converted_vae_checkpoint = custom_convert_ldm_vae_checkpoint(
|
||||
checkpoint["state_dict"], vae_config
|
||||
)
|
||||
|
||||
vae = AutoencoderKL(**vae_config)
|
||||
vae.load_state_dict(converted_vae_checkpoint)
|
||||
vae.save_pretrained(output_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--vae_pt_path",
|
||||
default="/Users/cwq/code/github/lama-cleaner/scripts/anything-v4.0.vae.pt",
|
||||
type=str,
|
||||
help="Path to the VAE.pt to convert.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dump_path",
|
||||
default="diffusion_pytorch_model.bin",
|
||||
type=str,
|
||||
help="Path to the VAE.pt to convert.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
|
||||
Reference in New Issue
Block a user