add powerpaint v2
This commit is contained in:
@@ -1,8 +1,6 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import copy
|
||||
import random
|
||||
from typing import Any, List, Optional, Union
|
||||
from typing import Any, List, Union
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
from iopaint.schema import PowerPaintTask
|
||||
@@ -14,6 +12,11 @@ def add_task_to_prompt(prompt, negative_prompt, task: PowerPaintTask):
|
||||
promptB = prompt + " P_ctxt"
|
||||
negative_promptA = negative_prompt + " P_obj"
|
||||
negative_promptB = negative_prompt + " P_obj"
|
||||
elif task == PowerPaintTask.context_aware:
|
||||
promptA = prompt + " P_ctxt"
|
||||
promptB = prompt + " P_ctxt"
|
||||
negative_promptA = negative_prompt
|
||||
negative_promptB = negative_prompt
|
||||
elif task == PowerPaintTask.shape_guided:
|
||||
promptA = prompt + " P_shape"
|
||||
promptB = prompt + " P_ctxt"
|
||||
@@ -33,6 +36,18 @@ def add_task_to_prompt(prompt, negative_prompt, task: PowerPaintTask):
|
||||
return promptA, promptB, negative_promptA, negative_promptB
|
||||
|
||||
|
||||
def task_to_prompt(task: PowerPaintTask):
|
||||
promptA, promptB, negative_promptA, negative_promptB = add_task_to_prompt(
|
||||
"", "", task
|
||||
)
|
||||
return (
|
||||
promptA.strip(),
|
||||
promptB.strip(),
|
||||
negative_promptA.strip(),
|
||||
negative_promptB.strip(),
|
||||
)
|
||||
|
||||
|
||||
class PowerPaintTokenizer:
|
||||
def __init__(self, tokenizer: CLIPTokenizer):
|
||||
self.wrapped = tokenizer
|
||||
@@ -237,304 +252,3 @@ class PowerPaintTokenizer:
|
||||
return text
|
||||
replaced_text = self.replace_text_with_placeholder_tokens(text)
|
||||
return replaced_text
|
||||
|
||||
|
||||
class EmbeddingLayerWithFixes(nn.Module):
|
||||
"""The revised embedding layer to support external embeddings. This design
|
||||
of this class is inspired by https://github.com/AUTOMATIC1111/stable-
|
||||
diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi
|
||||
jack.py#L224 # noqa.
|
||||
|
||||
Args:
|
||||
wrapped (nn.Emebdding): The embedding layer to be wrapped.
|
||||
external_embeddings (Union[dict, List[dict]], optional): The external
|
||||
embeddings added to this layer. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
wrapped: nn.Embedding,
|
||||
external_embeddings: Optional[Union[dict, List[dict]]] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.wrapped = wrapped
|
||||
self.num_embeddings = wrapped.weight.shape[0]
|
||||
|
||||
self.external_embeddings = []
|
||||
if external_embeddings:
|
||||
self.add_embeddings(external_embeddings)
|
||||
|
||||
self.trainable_embeddings = nn.ParameterDict()
|
||||
|
||||
@property
|
||||
def weight(self):
|
||||
"""Get the weight of wrapped embedding layer."""
|
||||
return self.wrapped.weight
|
||||
|
||||
def check_duplicate_names(self, embeddings: List[dict]):
|
||||
"""Check whether duplicate names exist in list of 'external
|
||||
embeddings'.
|
||||
|
||||
Args:
|
||||
embeddings (List[dict]): A list of embedding to be check.
|
||||
"""
|
||||
names = [emb["name"] for emb in embeddings]
|
||||
assert len(names) == len(set(names)), (
|
||||
"Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'"
|
||||
)
|
||||
|
||||
def check_ids_overlap(self, embeddings):
|
||||
"""Check whether overlap exist in token ids of 'external_embeddings'.
|
||||
|
||||
Args:
|
||||
embeddings (List[dict]): A list of embedding to be check.
|
||||
"""
|
||||
ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings]
|
||||
ids_range.sort() # sort by 'start'
|
||||
# check if 'end' has overlapping
|
||||
for idx in range(len(ids_range) - 1):
|
||||
name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1]
|
||||
assert ids_range[idx][1] <= ids_range[idx + 1][0], (
|
||||
f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'."
|
||||
)
|
||||
|
||||
def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]):
|
||||
"""Add external embeddings to this layer.
|
||||
|
||||
Use case:
|
||||
|
||||
>>> 1. Add token to tokenizer and get the token id.
|
||||
>>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32')
|
||||
>>> # 'how much' in kiswahili
|
||||
>>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4)
|
||||
>>>
|
||||
>>> 2. Add external embeddings to the model.
|
||||
>>> new_embedding = {
|
||||
>>> 'name': 'ngapi', # 'how much' in kiswahili
|
||||
>>> 'embedding': torch.ones(1, 15) * 4,
|
||||
>>> 'start': tokenizer.get_token_info('kwaheri')['start'],
|
||||
>>> 'end': tokenizer.get_token_info('kwaheri')['end'],
|
||||
>>> 'trainable': False # if True, will registry as a parameter
|
||||
>>> }
|
||||
>>> embedding_layer = nn.Embedding(10, 15)
|
||||
>>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer)
|
||||
>>> embedding_layer_wrapper.add_embeddings(new_embedding)
|
||||
>>>
|
||||
>>> 3. Forward tokenizer and embedding layer!
|
||||
>>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?']
|
||||
>>> input_ids = tokenizer(
|
||||
>>> input_text, padding='max_length', truncation=True,
|
||||
>>> return_tensors='pt')['input_ids']
|
||||
>>> out_feat = embedding_layer_wrapper(input_ids)
|
||||
>>>
|
||||
>>> 4. Let's validate the result!
|
||||
>>> assert (out_feat[0, 3: 7] == 2.3).all()
|
||||
>>> assert (out_feat[2, 5: 9] == 2.3).all()
|
||||
|
||||
Args:
|
||||
embeddings (Union[dict, list[dict]]): The external embeddings to
|
||||
be added. Each dict must contain the following 4 fields: 'name'
|
||||
(the name of this embedding), 'embedding' (the embedding
|
||||
tensor), 'start' (the start token id of this embedding), 'end'
|
||||
(the end token id of this embedding). For example:
|
||||
`{name: NAME, start: START, end: END, embedding: torch.Tensor}`
|
||||
"""
|
||||
if isinstance(embeddings, dict):
|
||||
embeddings = [embeddings]
|
||||
|
||||
self.external_embeddings += embeddings
|
||||
self.check_duplicate_names(self.external_embeddings)
|
||||
self.check_ids_overlap(self.external_embeddings)
|
||||
|
||||
# set for trainable
|
||||
added_trainable_emb_info = []
|
||||
for embedding in embeddings:
|
||||
trainable = embedding.get("trainable", False)
|
||||
if trainable:
|
||||
name = embedding["name"]
|
||||
embedding["embedding"] = torch.nn.Parameter(embedding["embedding"])
|
||||
self.trainable_embeddings[name] = embedding["embedding"]
|
||||
added_trainable_emb_info.append(name)
|
||||
|
||||
added_emb_info = [emb["name"] for emb in embeddings]
|
||||
added_emb_info = ", ".join(added_emb_info)
|
||||
print(f"Successfully add external embeddings: {added_emb_info}.", "current")
|
||||
|
||||
if added_trainable_emb_info:
|
||||
added_trainable_emb_info = ", ".join(added_trainable_emb_info)
|
||||
print(
|
||||
"Successfully add trainable external embeddings: "
|
||||
f"{added_trainable_emb_info}",
|
||||
"current",
|
||||
)
|
||||
|
||||
def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
"""Replace external input ids to 0.
|
||||
|
||||
Args:
|
||||
input_ids (torch.Tensor): The input ids to be replaced.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The replaced input ids.
|
||||
"""
|
||||
input_ids_fwd = input_ids.clone()
|
||||
input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0
|
||||
return input_ids_fwd
|
||||
|
||||
def replace_embeddings(
|
||||
self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict
|
||||
) -> torch.Tensor:
|
||||
"""Replace external embedding to the embedding layer. Noted that, in
|
||||
this function we use `torch.cat` to avoid inplace modification.
|
||||
|
||||
Args:
|
||||
input_ids (torch.Tensor): The original token ids. Shape like
|
||||
[LENGTH, ].
|
||||
embedding (torch.Tensor): The embedding of token ids after
|
||||
`replace_input_ids` function.
|
||||
external_embedding (dict): The external embedding to be replaced.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The replaced embedding.
|
||||
"""
|
||||
new_embedding = []
|
||||
|
||||
name = external_embedding["name"]
|
||||
start = external_embedding["start"]
|
||||
end = external_embedding["end"]
|
||||
target_ids_to_replace = [i for i in range(start, end)]
|
||||
ext_emb = external_embedding["embedding"]
|
||||
|
||||
# do not need to replace
|
||||
if not (input_ids == start).any():
|
||||
return embedding
|
||||
|
||||
# start replace
|
||||
s_idx, e_idx = 0, 0
|
||||
while e_idx < len(input_ids):
|
||||
if input_ids[e_idx] == start:
|
||||
if e_idx != 0:
|
||||
# add embedding do not need to replace
|
||||
new_embedding.append(embedding[s_idx:e_idx])
|
||||
|
||||
# check if the next embedding need to replace is valid
|
||||
actually_ids_to_replace = [
|
||||
int(i) for i in input_ids[e_idx : e_idx + end - start]
|
||||
]
|
||||
assert actually_ids_to_replace == target_ids_to_replace, (
|
||||
f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. "
|
||||
f"Expect '{target_ids_to_replace}' for embedding "
|
||||
f"'{name}' but found '{actually_ids_to_replace}'."
|
||||
)
|
||||
|
||||
new_embedding.append(ext_emb)
|
||||
|
||||
s_idx = e_idx + end - start
|
||||
e_idx = s_idx + 1
|
||||
else:
|
||||
e_idx += 1
|
||||
|
||||
if e_idx == len(input_ids):
|
||||
new_embedding.append(embedding[s_idx:e_idx])
|
||||
|
||||
return torch.cat(new_embedding, dim=0)
|
||||
|
||||
def forward(
|
||||
self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None
|
||||
):
|
||||
"""The forward function.
|
||||
|
||||
Args:
|
||||
input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or
|
||||
[LENGTH, ].
|
||||
external_embeddings (Optional[List[dict]]): The external
|
||||
embeddings. If not passed, only `self.external_embeddings`
|
||||
will be used. Defaults to None.
|
||||
|
||||
input_ids: shape like [bz, LENGTH] or [LENGTH].
|
||||
"""
|
||||
assert input_ids.ndim in [1, 2]
|
||||
if input_ids.ndim == 1:
|
||||
input_ids = input_ids.unsqueeze(0)
|
||||
|
||||
if external_embeddings is None and not self.external_embeddings:
|
||||
return self.wrapped(input_ids)
|
||||
|
||||
input_ids_fwd = self.replace_input_ids(input_ids)
|
||||
inputs_embeds = self.wrapped(input_ids_fwd)
|
||||
|
||||
vecs = []
|
||||
|
||||
if external_embeddings is None:
|
||||
external_embeddings = []
|
||||
elif isinstance(external_embeddings, dict):
|
||||
external_embeddings = [external_embeddings]
|
||||
embeddings = self.external_embeddings + external_embeddings
|
||||
|
||||
for input_id, embedding in zip(input_ids, inputs_embeds):
|
||||
new_embedding = embedding
|
||||
for external_embedding in embeddings:
|
||||
new_embedding = self.replace_embeddings(
|
||||
input_id, new_embedding, external_embedding
|
||||
)
|
||||
vecs.append(new_embedding)
|
||||
|
||||
return torch.stack(vecs)
|
||||
|
||||
|
||||
def add_tokens(
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
placeholder_tokens: list,
|
||||
initialize_tokens: list = None,
|
||||
num_vectors_per_token: int = 1,
|
||||
):
|
||||
"""Add token for training.
|
||||
|
||||
# TODO: support add tokens as dict, then we can load pretrained tokens.
|
||||
"""
|
||||
if initialize_tokens is not None:
|
||||
assert len(initialize_tokens) == len(
|
||||
placeholder_tokens
|
||||
), "placeholder_token should be the same length as initialize_token"
|
||||
for ii in range(len(placeholder_tokens)):
|
||||
tokenizer.add_placeholder_token(
|
||||
placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token
|
||||
)
|
||||
|
||||
# text_encoder.set_embedding_layer()
|
||||
embedding_layer = text_encoder.text_model.embeddings.token_embedding
|
||||
text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(
|
||||
embedding_layer
|
||||
)
|
||||
embedding_layer = text_encoder.text_model.embeddings.token_embedding
|
||||
|
||||
assert embedding_layer is not None, (
|
||||
"Do not support get embedding layer for current text encoder. "
|
||||
"Please check your configuration."
|
||||
)
|
||||
initialize_embedding = []
|
||||
if initialize_tokens is not None:
|
||||
for ii in range(len(placeholder_tokens)):
|
||||
init_id = tokenizer(initialize_tokens[ii]).input_ids[1]
|
||||
temp_embedding = embedding_layer.weight[init_id]
|
||||
initialize_embedding.append(
|
||||
temp_embedding[None, ...].repeat(num_vectors_per_token, 1)
|
||||
)
|
||||
else:
|
||||
for ii in range(len(placeholder_tokens)):
|
||||
init_id = tokenizer("a").input_ids[1]
|
||||
temp_embedding = embedding_layer.weight[init_id]
|
||||
len_emb = temp_embedding.shape[0]
|
||||
init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0
|
||||
initialize_embedding.append(init_weight)
|
||||
|
||||
# initialize_embedding = torch.cat(initialize_embedding,dim=0)
|
||||
|
||||
token_info_all = []
|
||||
for ii in range(len(placeholder_tokens)):
|
||||
token_info = tokenizer.get_token_info(placeholder_tokens[ii])
|
||||
token_info["embedding"] = initialize_embedding[ii]
|
||||
token_info["trainable"] = True
|
||||
token_info_all.append(token_info)
|
||||
embedding_layer.add_embeddings(token_info_all)
|
||||
|
||||
Reference in New Issue
Block a user