This commit is contained in:
Qing
2023-12-01 10:15:35 +08:00
parent 973987dfbb
commit 9a9eb8abfd
55 changed files with 2596 additions and 1251 deletions

View File

@@ -1,4 +1,4 @@
import gc
import os
import PIL.Image
import cv2
@@ -6,34 +6,12 @@ import numpy as np
import torch
from loguru import logger
from lama_cleaner.const import DIFFUSERS_MODEL_FP16_REVERSION
from lama_cleaner.model.base import DiffusionInpaintModel
from lama_cleaner.model.utils import torch_gc
from lama_cleaner.model.helper.cpu_text_encoder import CPUTextEncoderWrapper
from lama_cleaner.schema import Config
class CPUTextEncoderWrapper(torch.nn.Module):
def __init__(self, text_encoder, torch_dtype):
super().__init__()
self.config = text_encoder.config
self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True)
self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True)
self.torch_dtype = torch_dtype
del text_encoder
torch_gc()
def __call__(self, x, **kwargs):
input_device = x.device
return [
self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0]
.to(input_device)
.to(self.torch_dtype)
]
@property
def dtype(self):
return self.torch_dtype
class SD(DiffusionInpaintModel):
pad_mod = 8
min_size = 512
@@ -44,9 +22,7 @@ class SD(DiffusionInpaintModel):
fp16 = not kwargs.get("no_half", False)
model_kwargs = {
"local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"])
}
model_kwargs = {}
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
logger.info("Disable Stable Diffusion Model NSFW checker")
model_kwargs.update(
@@ -60,14 +36,20 @@ class SD(DiffusionInpaintModel):
use_gpu = device == torch.device("cuda") and torch.cuda.is_available()
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
if kwargs.get("sd_local_model_path", None):
if os.path.isfile(self.model_id_or_path):
self.model = StableDiffusionInpaintPipeline.from_single_file(
kwargs["sd_local_model_path"], torch_dtype=torch_dtype, **model_kwargs
self.model_id_or_path, torch_dtype=torch_dtype, **model_kwargs
)
else:
self.model = StableDiffusionInpaintPipeline.from_pretrained(
self.model_id_or_path,
revision="fp16" if use_gpu and fp16 else "main",
revision="fp16"
if (
self.model_id_or_path in DIFFUSERS_MODEL_FP16_REVERSION
and use_gpu
and fp16
)
else "main",
torch_dtype=torch_dtype,
use_auth_token=kwargs["hf_access_token"],
**model_kwargs,