lots of updates
This commit is contained in:
@@ -6,6 +6,9 @@ import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.helper import resize_max_size
|
||||
from lama_cleaner.model.base import InpaintModel
|
||||
from lama_cleaner.schema import Config
|
||||
|
||||
@@ -15,15 +18,20 @@ class PaintByExample(InpaintModel):
|
||||
min_size = 512
|
||||
|
||||
def init_model(self, device: torch.device, **kwargs):
|
||||
fp16 = not kwargs['no_half']
|
||||
fp16 = not kwargs.get('no_half', False)
|
||||
use_gpu = device == torch.device('cuda') and torch.cuda.is_available()
|
||||
torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32
|
||||
model_kwargs = {"local_files_only": kwargs.get('local_files_only', False)}
|
||||
self.model = DiffusionPipeline.from_pretrained(
|
||||
"Fantasy-Studio/Paint-by-Example",
|
||||
torch_dtype=torch_dtype,
|
||||
**model_kwargs
|
||||
)
|
||||
self.model.enable_attention_slicing()
|
||||
self.model = self.model.to(device)
|
||||
self.model.enable_attention_slicing()
|
||||
# TODO: gpu_id
|
||||
if kwargs.get('cpu_offload', False) and torch.cuda.is_available():
|
||||
self.model.enable_sequential_cpu_offload(gpu_id=0)
|
||||
|
||||
def forward(self, image, mask, config: Config):
|
||||
"""Input image and output image have same size
|
||||
@@ -49,6 +57,25 @@ class PaintByExample(InpaintModel):
|
||||
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
||||
return output
|
||||
|
||||
def _scaled_pad_forward(self, image, mask, config: Config):
|
||||
longer_side_length = int(config.sd_scale * max(image.shape[:2]))
|
||||
origin_size = image.shape[:2]
|
||||
downsize_image = resize_max_size(image, size_limit=longer_side_length)
|
||||
downsize_mask = resize_max_size(mask, size_limit=longer_side_length)
|
||||
logger.info(
|
||||
f"Resize image to do paint_by_example: {image.shape} -> {downsize_image.shape}"
|
||||
)
|
||||
inpaint_result = self._pad_forward(downsize_image, downsize_mask, config)
|
||||
# only paste masked area result
|
||||
inpaint_result = cv2.resize(
|
||||
inpaint_result,
|
||||
(origin_size[1], origin_size[0]),
|
||||
interpolation=cv2.INTER_CUBIC,
|
||||
)
|
||||
original_pixel_indices = mask < 127
|
||||
inpaint_result[original_pixel_indices] = image[:, :, ::-1][original_pixel_indices]
|
||||
return inpaint_result
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, image, mask, config: Config):
|
||||
"""
|
||||
@@ -58,11 +85,11 @@ class PaintByExample(InpaintModel):
|
||||
"""
|
||||
if config.use_croper:
|
||||
crop_img, crop_mask, (l, t, r, b) = self._apply_cropper(image, mask, config)
|
||||
crop_image = self._pad_forward(crop_img, crop_mask, config)
|
||||
crop_image = self._scaled_pad_forward(crop_img, crop_mask, config)
|
||||
inpaint_result = image[:, :, ::-1]
|
||||
inpaint_result[t:b, l:r, :] = crop_image
|
||||
else:
|
||||
inpaint_result = self._pad_forward(image, mask, config)
|
||||
inpaint_result = self._scaled_pad_forward(image, mask, config)
|
||||
|
||||
return inpaint_result
|
||||
|
||||
|
||||
Reference in New Issue
Block a user