make generate mask from RemoveBG && AnimeSeg work
This commit is contained in:
@@ -1,11 +1,13 @@
|
||||
from typing import Dict
|
||||
|
||||
from loguru import logger
|
||||
|
||||
from .interactive_seg import InteractiveSeg
|
||||
from .remove_bg import RemoveBG
|
||||
from .realesrgan import RealESRGANUpscaler
|
||||
from .gfpgan_plugin import GFPGANPlugin
|
||||
from .restoreformer import RestoreFormerPlugin
|
||||
from .anime_seg import AnimeSeg
|
||||
from .gfpgan_plugin import GFPGANPlugin
|
||||
from .interactive_seg import InteractiveSeg
|
||||
from .realesrgan import RealESRGANUpscaler
|
||||
from .remove_bg import RemoveBG
|
||||
from .restoreformer import RestoreFormerPlugin
|
||||
from ..const import InteractiveSegModel, Device, RealESRGANModel
|
||||
|
||||
|
||||
@@ -23,7 +25,7 @@ def build_plugins(
|
||||
enable_restoreformer: bool,
|
||||
restoreformer_device: Device,
|
||||
no_half: bool,
|
||||
):
|
||||
) -> Dict:
|
||||
plugins = {}
|
||||
if enable_interactive_seg:
|
||||
logger.info(f"Initialize {InteractiveSeg.name} plugin")
|
||||
|
||||
@@ -416,6 +416,8 @@ ANIME_SEG_MODELS = {
|
||||
class AnimeSeg(BasePlugin):
|
||||
# Model from: https://github.com/SkyTNT/anime-segmentation
|
||||
name = "AnimeSeg"
|
||||
support_gen_image = True
|
||||
support_gen_mask = True
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
@@ -426,10 +428,19 @@ class AnimeSeg(BasePlugin):
|
||||
ANIME_SEG_MODELS["md5"],
|
||||
)
|
||||
|
||||
def __call__(self, rgb_np_img, req: RunPluginRequest):
|
||||
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
mask = self.forward(rgb_np_img)
|
||||
mask = Image.fromarray(mask, mode="L")
|
||||
h0, w0 = rgb_np_img.shape[0], rgb_np_img.shape[1]
|
||||
empty = Image.new("RGBA", (w0, h0), 0)
|
||||
img = Image.fromarray(rgb_np_img)
|
||||
cutout = Image.composite(img, empty, mask)
|
||||
return np.asarray(cutout)
|
||||
|
||||
def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
return self.forward(rgb_np_img)
|
||||
|
||||
@torch.no_grad()
|
||||
@torch.inference_mode()
|
||||
def forward(self, rgb_np_img):
|
||||
s = 1024
|
||||
|
||||
@@ -448,9 +459,4 @@ class AnimeSeg(BasePlugin):
|
||||
mask = self.model(tmpImg)
|
||||
mask = mask[0, :, ph // 2 : ph // 2 + h, pw // 2 : pw // 2 + w]
|
||||
mask = cv2.resize(mask.cpu().numpy().transpose((1, 2, 0)), (w0, h0))
|
||||
mask = Image.fromarray((mask * 255).astype("uint8"), mode="L")
|
||||
|
||||
empty = Image.new("RGBA", (w0, h0), 0)
|
||||
img = Image.fromarray(rgb_np_img)
|
||||
cutout = Image.composite(img, empty, mask)
|
||||
return np.asarray(cutout)
|
||||
return (mask * 255).astype("uint8")
|
||||
|
||||
@@ -5,15 +5,23 @@ from lama_cleaner.schema import RunPluginRequest
|
||||
|
||||
|
||||
class BasePlugin:
|
||||
name: str
|
||||
support_gen_image: bool = False
|
||||
support_gen_mask: bool = False
|
||||
|
||||
def __init__(self):
|
||||
err_msg = self.check_dep()
|
||||
if err_msg:
|
||||
logger.error(err_msg)
|
||||
exit(-1)
|
||||
|
||||
def __call__(self, rgb_np_img, req: RunPluginRequest) -> np.array:
|
||||
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
# return RGBA np image or BGR np image
|
||||
...
|
||||
|
||||
def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
# return GRAY or BGR np image, 255 means foreground, 0 means background
|
||||
...
|
||||
|
||||
def check_dep(self):
|
||||
...
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.helper import download_model
|
||||
@@ -8,6 +9,7 @@ from lama_cleaner.schema import RunPluginRequest
|
||||
|
||||
class GFPGANPlugin(BasePlugin):
|
||||
name = "GFPGAN"
|
||||
support_gen_image = True
|
||||
|
||||
def __init__(self, device, upscaler=None):
|
||||
super().__init__()
|
||||
@@ -37,7 +39,7 @@ class GFPGANPlugin(BasePlugin):
|
||||
self.face_enhancer.face_helper.face_det.to(device)
|
||||
)
|
||||
|
||||
def __call__(self, rgb_np_img, req: RunPluginRequest):
|
||||
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
weight = 0.5
|
||||
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
|
||||
logger.info(f"GFPGAN input shape: {bgr_np_img.shape}")
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.helper import download_model
|
||||
@@ -34,6 +35,7 @@ SEGMENT_ANYTHING_MODELS = {
|
||||
|
||||
class InteractiveSeg(BasePlugin):
|
||||
name = "InteractiveSeg"
|
||||
support_gen_mask = True
|
||||
|
||||
def __init__(self, model_name, device):
|
||||
super().__init__()
|
||||
@@ -47,10 +49,11 @@ class InteractiveSeg(BasePlugin):
|
||||
)
|
||||
self.prev_img_md5 = None
|
||||
|
||||
def __call__(self, rgb_np_img, req: RunPluginRequest):
|
||||
def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
img_md5 = hashlib.md5(req.image.encode("utf-8")).hexdigest()
|
||||
return self.forward(rgb_np_img, req.clicks, img_md5)
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, rgb_np_img, clicks: List[List], img_md5: str):
|
||||
input_point = []
|
||||
input_label = []
|
||||
@@ -70,13 +73,4 @@ class InteractiveSeg(BasePlugin):
|
||||
multimask_output=False,
|
||||
)
|
||||
mask = masks[0].astype(np.uint8) * 255
|
||||
# TODO: how to set kernel size?
|
||||
kernel_size = 9
|
||||
mask = cv2.dilate(
|
||||
mask, np.ones((kernel_size, kernel_size), np.uint8), iterations=1
|
||||
)
|
||||
# fronted brush color "ffcc00bb"
|
||||
res_mask = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
|
||||
res_mask[mask == 255] = [255, 203, 0, int(255 * 0.73)]
|
||||
res_mask = cv2.cvtColor(res_mask, cv2.COLOR_BGRA2RGBA)
|
||||
return res_mask
|
||||
return mask
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
from enum import Enum
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.const import RealESRGANModel
|
||||
@@ -11,6 +13,7 @@ from lama_cleaner.schema import RunPluginRequest
|
||||
|
||||
class RealESRGANUpscaler(BasePlugin):
|
||||
name = "RealESRGAN"
|
||||
support_gen_image = True
|
||||
|
||||
def __init__(self, name, device, no_half=False):
|
||||
super().__init__()
|
||||
@@ -77,13 +80,14 @@ class RealESRGANUpscaler(BasePlugin):
|
||||
device=device,
|
||||
)
|
||||
|
||||
def __call__(self, rgb_np_img, req: RunPluginRequest):
|
||||
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
|
||||
logger.info(f"RealESRGAN input shape: {bgr_np_img.shape}, scale: {req.scale}")
|
||||
result = self.forward(bgr_np_img, req.scale)
|
||||
logger.info(f"RealESRGAN output shape: {result.shape}")
|
||||
return result
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, bgr_np_img, scale: float):
|
||||
# 输出是 BGR
|
||||
upsampled = self.model.enhance(bgr_np_img, outscale=scale)[0]
|
||||
|
||||
@@ -9,6 +9,8 @@ from lama_cleaner.schema import RunPluginRequest
|
||||
|
||||
class RemoveBG(BasePlugin):
|
||||
name = "RemoveBG"
|
||||
support_gen_mask = True
|
||||
support_gen_image = True
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
@@ -20,17 +22,24 @@ class RemoveBG(BasePlugin):
|
||||
|
||||
self.session = new_session(model_name="u2net")
|
||||
|
||||
def __call__(self, rgb_np_img, req: RunPluginRequest):
|
||||
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
|
||||
return self.forward(bgr_np_img)
|
||||
|
||||
def forward(self, bgr_np_img) -> np.ndarray:
|
||||
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
from rembg import remove
|
||||
|
||||
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
|
||||
|
||||
# return BGRA image
|
||||
output = remove(bgr_np_img, session=self.session)
|
||||
return cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
|
||||
|
||||
def gen_mask(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
from rembg import remove
|
||||
|
||||
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
|
||||
|
||||
# return BGR image, 255 means foreground, 0 means background
|
||||
output = remove(bgr_np_img, session=self.session, only_mask=True)
|
||||
return output
|
||||
|
||||
def check_dep(self):
|
||||
try:
|
||||
import rembg
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.helper import download_model
|
||||
@@ -8,6 +9,7 @@ from lama_cleaner.schema import RunPluginRequest
|
||||
|
||||
class RestoreFormerPlugin(BasePlugin):
|
||||
name = "RestoreFormer"
|
||||
support_gen_image = True
|
||||
|
||||
def __init__(self, device, upscaler=None):
|
||||
super().__init__()
|
||||
@@ -32,7 +34,7 @@ class RestoreFormerPlugin(BasePlugin):
|
||||
bg_upsampler=upscaler.model if upscaler is not None else None,
|
||||
)
|
||||
|
||||
def __call__(self, rgb_np_img, req: RunPluginRequest):
|
||||
def gen_image(self, rgb_np_img, req: RunPluginRequest) -> np.ndarray:
|
||||
weight = 0.5
|
||||
bgr_np_img = cv2.cvtColor(rgb_np_img, cv2.COLOR_RGB2BGR)
|
||||
logger.info(f"RestoreFormer input shape: {bgr_np_img.shape}")
|
||||
|
||||
Reference in New Issue
Block a user