wip mat float16

This commit is contained in:
Qing
2023-03-25 22:46:28 +08:00
parent 7e028c3908
commit eb304ba696
3 changed files with 63 additions and 181 deletions

View File

@@ -52,7 +52,7 @@ class ModulatedConv2d(nn.Module):
)
self.out_channels = out_channels
self.kernel_size = kernel_size
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
self.padding = self.kernel_size // 2
self.up = up
self.down = down
@@ -213,7 +213,7 @@ class DecBlockFirst(nn.Module):
super().__init__()
self.fc = FullyConnectedLayer(
in_features=in_channels * 2,
out_features=in_channels * 4**2,
out_features=in_channels * 4 ** 2,
activation=activation,
)
self.conv = StyleConv(
@@ -312,7 +312,7 @@ class DecBlock(nn.Module):
in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
resolution=2 ** res,
kernel_size=3,
up=2,
use_noise=use_noise,
@@ -323,7 +323,7 @@ class DecBlock(nn.Module):
in_channels=out_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
resolution=2 ** res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
@@ -402,9 +402,6 @@ class MappingNet(torch.nn.Module):
def forward(
self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False
):
import ipdb
ipdb.set_trace()
# Embed, normalize, and concat inputs.
x = None
if self.z_dim > 0:
@@ -510,7 +507,7 @@ class Discriminator(torch.nn.Module):
self.img_channels = img_channels
resolution_log2 = int(np.log2(img_resolution))
assert img_resolution == 2**resolution_log2 and img_resolution >= 4
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4
self.resolution_log2 = resolution_log2
def nf(stage):
@@ -546,7 +543,7 @@ class Discriminator(torch.nn.Module):
)
self.Dis = nn.Sequential(*Dis)
self.fc0 = FullyConnectedLayer(nf(2) * 4**2, nf(2), activation=activation)
self.fc0 = FullyConnectedLayer(nf(2) * 4 ** 2, nf(2), activation=activation)
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
def forward(self, images_in, masks_in, c):
@@ -565,7 +562,7 @@ class Discriminator(torch.nn.Module):
def nf(stage, channel_base=32768, channel_decay=1.0, channel_max=512):
NF = {512: 64, 256: 128, 128: 256, 64: 512, 32: 512, 16: 512, 8: 512, 4: 512}
return NF[2**stage]
return NF[2 ** stage]
class Mlp(nn.Module):
@@ -662,7 +659,7 @@ class Conv2dLayerPartial(nn.Module):
)
self.weight_maskUpdater = torch.ones(1, 1, kernel_size, kernel_size)
self.slide_winsize = kernel_size**2
self.slide_winsize = kernel_size ** 2
self.stride = down
self.padding = kernel_size // 2 if kernel_size % 2 == 1 else 0
@@ -678,9 +675,9 @@ class Conv2dLayerPartial(nn.Module):
stride=self.stride,
padding=self.padding,
)
mask_ratio = self.slide_winsize / (update_mask + 1e-8)
mask_ratio = self.slide_winsize / (update_mask.to(torch.float32) + 1e-8)
update_mask = torch.clamp(update_mask, 0, 1) # 0 or 1
mask_ratio = torch.mul(mask_ratio, update_mask)
mask_ratio = torch.mul(mask_ratio, update_mask).to(x.dtype)
x = self.conv(x)
x = torch.mul(x, mask_ratio)
return x, update_mask
@@ -718,7 +715,7 @@ class WindowAttention(nn.Module):
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.scale = qk_scale or head_dim ** -0.5
self.q = FullyConnectedLayer(in_features=dim, out_features=dim)
self.k = FullyConnectedLayer(in_features=dim, out_features=dim)
@@ -734,7 +731,7 @@ class WindowAttention(nn.Module):
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
norm_x = F.normalize(x, p=2.0, dim=-1)
norm_x = F.normalize(x, p=2.0, dim=-1, eps=torch.finfo(x.dtype).eps)
q = (
self.q(norm_x)
.reshape(B_, N, self.num_heads, C // self.num_heads)
@@ -771,7 +768,6 @@ class WindowAttention(nn.Module):
).repeat(1, N, 1)
attn = self.softmax(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
return x, mask_windows
@@ -935,7 +931,9 @@ class SwinTransformerBlock(nn.Module):
) # nW*B, window_size*window_size, C
else:
attn_windows, mask_windows = self.attn(
x_windows, mask_windows, mask=self.calculate_mask(x_size).to(x.device)
x_windows,
mask_windows,
mask=self.calculate_mask(x_size).to(x.dtype).to(x.device),
) # nW*B, window_size*window_size, C
# merge windows
@@ -1213,7 +1211,7 @@ class Encoder(nn.Module):
self.resolution = []
for idx, i in enumerate(range(res_log2, 3, -1)): # from input size to 16x16
res = 2**i
res = 2 ** i
self.resolution.append(res)
if i == res_log2:
block = EncFromRGB(img_channels * 2 + 1, nf(i), activation)
@@ -1298,7 +1296,7 @@ class DecBlockFirstV2(nn.Module):
in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
resolution=2 ** res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
@@ -1343,7 +1341,7 @@ class DecBlock(nn.Module):
in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
resolution=2 ** res,
kernel_size=3,
up=2,
use_noise=use_noise,
@@ -1354,7 +1352,7 @@ class DecBlock(nn.Module):
in_channels=out_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
resolution=2 ** res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
@@ -1391,7 +1389,7 @@ class Decoder(nn.Module):
for res in range(5, res_log2 + 1):
setattr(
self,
"Dec_%dx%d" % (2**res, 2**res),
"Dec_%dx%d" % (2 ** res, 2 ** res),
DecBlock(
res,
nf(res - 1),
@@ -1408,7 +1406,7 @@ class Decoder(nn.Module):
def forward(self, x, ws, gs, E_features, noise_mode="random"):
x, img = self.Dec_16x16(x, ws, gs, E_features, noise_mode=noise_mode)
for res in range(5, self.res_log2 + 1):
block = getattr(self, "Dec_%dx%d" % (2**res, 2**res))
block = getattr(self, "Dec_%dx%d" % (2 ** res, 2 ** res))
x, img = block(x, img, ws, gs, E_features, noise_mode=noise_mode)
return img
@@ -1433,7 +1431,7 @@ class DecStyleBlock(nn.Module):
in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
resolution=2 ** res,
kernel_size=3,
up=2,
use_noise=use_noise,
@@ -1444,7 +1442,7 @@ class DecStyleBlock(nn.Module):
in_channels=out_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
resolution=2 ** res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
@@ -1642,7 +1640,7 @@ class SynthesisNet(nn.Module):
):
super().__init__()
resolution_log2 = int(np.log2(img_resolution))
assert img_resolution == 2**resolution_log2 and img_resolution >= 4
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4
self.num_layers = resolution_log2 * 2 - 3 * 2
self.img_resolution = img_resolution
@@ -1783,7 +1781,7 @@ class Discriminator(torch.nn.Module):
self.img_channels = img_channels
resolution_log2 = int(np.log2(img_resolution))
assert img_resolution == 2**resolution_log2 and img_resolution >= 4
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4
self.resolution_log2 = resolution_log2
if cmap_dim == None:
@@ -1814,7 +1812,7 @@ class Discriminator(torch.nn.Module):
)
self.Dis = nn.Sequential(*Dis)
self.fc0 = FullyConnectedLayer(nf(2) * 4**2, nf(2), activation=activation)
self.fc0 = FullyConnectedLayer(nf(2) * 4 ** 2, nf(2), activation=activation)
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
# for 64x64
@@ -1839,7 +1837,7 @@ class Discriminator(torch.nn.Module):
self.Dis_stg1 = nn.Sequential(*Dis_stg1)
self.fc0_stg1 = FullyConnectedLayer(
nf(2) // 2 * 4**2, nf(2) // 2, activation=activation
nf(2) // 2 * 4 ** 2, nf(2) // 2, activation=activation
)
self.fc1_stg1 = FullyConnectedLayer(
nf(2) // 2, 1 if cmap_dim == 0 else cmap_dim
@@ -1874,7 +1872,7 @@ MAT_MODEL_MD5 = os.environ.get("MAT_MODEL_MD5", "8ca927835fa3f5e21d65ffcb165377e
class MAT(InpaintModel):
name = "mat"
min_size = 512
min_size = 1024
pad_mod = 512
pad_to_square = True
@@ -1890,9 +1888,9 @@ class MAT(InpaintModel):
img_resolution=512,
img_channels=3,
mapping_kwargs={"torch_dtype": self.torch_dtype},
)
).to(self.torch_dtype)
# fmt: off
self.model = load_model(G, MAT_MODEL_URL, device, MAT_MODEL_MD5).to(self.torch_dtype)
self.model = load_model(G, MAT_MODEL_URL, device, MAT_MODEL_MD5)
self.z = torch.from_numpy(np.random.randn(1, G.z_dim)).to(self.torch_dtype).to(device)
self.label = torch.zeros([1, self.model.c_dim], device=device).to(self.torch_dtype)
# fmt: on

View File

@@ -27,7 +27,7 @@ def make_beta_schedule(
if schedule == "linear":
betas = (
torch.linspace(
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64
)
** 2
)
@@ -134,8 +134,10 @@ def timestep_embedding(device, timesteps, dim, max_period=10000, repeat_only=Fal
###### MAT and FcF #######
def normalize_2nd_moment(x, dim=1, eps=1e-8):
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
def normalize_2nd_moment(x, dim=1):
return (
x * (x.square().mean(dim=dim, keepdim=True) + torch.finfo(x.dtype).eps).rsqrt()
)
class EasyDict(dict):
@@ -460,7 +462,7 @@ def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
if f is None:
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
assert f.dtype == torch.float32 and not f.requires_grad
assert not f.requires_grad
batch_size, num_channels, in_height, in_width = x.shape
# upx, upy = _parse_scaling(up)
# downx, downy = _parse_scaling(down)
@@ -733,9 +735,7 @@ def conv2d_resample(
# Validate arguments.
assert isinstance(x, torch.Tensor) and (x.ndim == 4)
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
assert f is None or (
isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32
)
assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2])
assert isinstance(up, int) and (up >= 1)
assert isinstance(down, int) and (down >= 1)
# assert isinstance(groups, int) and (groups >= 1), f"!!!!!! groups: {groups} isinstance(groups, int) {isinstance(groups, int)} {type(groups)}"
@@ -772,7 +772,7 @@ def conv2d_resample(
f=f,
up=up,
padding=[px0, px1, py0, py1],
gain=up**2,
gain=up ** 2,
flip_filter=flip_filter,
)
return x
@@ -814,7 +814,7 @@ def conv2d_resample(
x=x,
f=f,
padding=[px0 + pxt, px1 + pxt, py0 + pyt, py1 + pyt],
gain=up**2,
gain=up ** 2,
flip_filter=flip_filter,
)
if down > 1:
@@ -834,7 +834,7 @@ def conv2d_resample(
f=(f if up > 1 else None),
up=up,
padding=[px0, px1, py0, py1],
gain=up**2,
gain=up ** 2,
flip_filter=flip_filter,
)
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
@@ -870,7 +870,7 @@ class Conv2dLayer(torch.nn.Module):
self.register_buffer("resample_filter", setup_filter(resample_filter))
self.conv_clamp = conv_clamp
self.padding = kernel_size // 2
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2))
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
self.act_gain = activation_funcs[activation].def_gain
memory_format = (