wip mat float16
This commit is contained in:
@@ -402,9 +402,6 @@ class MappingNet(torch.nn.Module):
|
|||||||
def forward(
|
def forward(
|
||||||
self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False
|
self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False
|
||||||
):
|
):
|
||||||
import ipdb
|
|
||||||
|
|
||||||
ipdb.set_trace()
|
|
||||||
# Embed, normalize, and concat inputs.
|
# Embed, normalize, and concat inputs.
|
||||||
x = None
|
x = None
|
||||||
if self.z_dim > 0:
|
if self.z_dim > 0:
|
||||||
@@ -678,9 +675,9 @@ class Conv2dLayerPartial(nn.Module):
|
|||||||
stride=self.stride,
|
stride=self.stride,
|
||||||
padding=self.padding,
|
padding=self.padding,
|
||||||
)
|
)
|
||||||
mask_ratio = self.slide_winsize / (update_mask + 1e-8)
|
mask_ratio = self.slide_winsize / (update_mask.to(torch.float32) + 1e-8)
|
||||||
update_mask = torch.clamp(update_mask, 0, 1) # 0 or 1
|
update_mask = torch.clamp(update_mask, 0, 1) # 0 or 1
|
||||||
mask_ratio = torch.mul(mask_ratio, update_mask)
|
mask_ratio = torch.mul(mask_ratio, update_mask).to(x.dtype)
|
||||||
x = self.conv(x)
|
x = self.conv(x)
|
||||||
x = torch.mul(x, mask_ratio)
|
x = torch.mul(x, mask_ratio)
|
||||||
return x, update_mask
|
return x, update_mask
|
||||||
@@ -734,7 +731,7 @@ class WindowAttention(nn.Module):
|
|||||||
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
||||||
"""
|
"""
|
||||||
B_, N, C = x.shape
|
B_, N, C = x.shape
|
||||||
norm_x = F.normalize(x, p=2.0, dim=-1)
|
norm_x = F.normalize(x, p=2.0, dim=-1, eps=torch.finfo(x.dtype).eps)
|
||||||
q = (
|
q = (
|
||||||
self.q(norm_x)
|
self.q(norm_x)
|
||||||
.reshape(B_, N, self.num_heads, C // self.num_heads)
|
.reshape(B_, N, self.num_heads, C // self.num_heads)
|
||||||
@@ -771,7 +768,6 @@ class WindowAttention(nn.Module):
|
|||||||
).repeat(1, N, 1)
|
).repeat(1, N, 1)
|
||||||
|
|
||||||
attn = self.softmax(attn)
|
attn = self.softmax(attn)
|
||||||
|
|
||||||
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
||||||
x = self.proj(x)
|
x = self.proj(x)
|
||||||
return x, mask_windows
|
return x, mask_windows
|
||||||
@@ -935,7 +931,9 @@ class SwinTransformerBlock(nn.Module):
|
|||||||
) # nW*B, window_size*window_size, C
|
) # nW*B, window_size*window_size, C
|
||||||
else:
|
else:
|
||||||
attn_windows, mask_windows = self.attn(
|
attn_windows, mask_windows = self.attn(
|
||||||
x_windows, mask_windows, mask=self.calculate_mask(x_size).to(x.device)
|
x_windows,
|
||||||
|
mask_windows,
|
||||||
|
mask=self.calculate_mask(x_size).to(x.dtype).to(x.device),
|
||||||
) # nW*B, window_size*window_size, C
|
) # nW*B, window_size*window_size, C
|
||||||
|
|
||||||
# merge windows
|
# merge windows
|
||||||
@@ -1874,7 +1872,7 @@ MAT_MODEL_MD5 = os.environ.get("MAT_MODEL_MD5", "8ca927835fa3f5e21d65ffcb165377e
|
|||||||
|
|
||||||
class MAT(InpaintModel):
|
class MAT(InpaintModel):
|
||||||
name = "mat"
|
name = "mat"
|
||||||
min_size = 512
|
min_size = 1024
|
||||||
pad_mod = 512
|
pad_mod = 512
|
||||||
pad_to_square = True
|
pad_to_square = True
|
||||||
|
|
||||||
@@ -1890,9 +1888,9 @@ class MAT(InpaintModel):
|
|||||||
img_resolution=512,
|
img_resolution=512,
|
||||||
img_channels=3,
|
img_channels=3,
|
||||||
mapping_kwargs={"torch_dtype": self.torch_dtype},
|
mapping_kwargs={"torch_dtype": self.torch_dtype},
|
||||||
)
|
).to(self.torch_dtype)
|
||||||
# fmt: off
|
# fmt: off
|
||||||
self.model = load_model(G, MAT_MODEL_URL, device, MAT_MODEL_MD5).to(self.torch_dtype)
|
self.model = load_model(G, MAT_MODEL_URL, device, MAT_MODEL_MD5)
|
||||||
self.z = torch.from_numpy(np.random.randn(1, G.z_dim)).to(self.torch_dtype).to(device)
|
self.z = torch.from_numpy(np.random.randn(1, G.z_dim)).to(self.torch_dtype).to(device)
|
||||||
self.label = torch.zeros([1, self.model.c_dim], device=device).to(self.torch_dtype)
|
self.label = torch.zeros([1, self.model.c_dim], device=device).to(self.torch_dtype)
|
||||||
# fmt: on
|
# fmt: on
|
||||||
|
|||||||
@@ -134,8 +134,10 @@ def timestep_embedding(device, timesteps, dim, max_period=10000, repeat_only=Fal
|
|||||||
###### MAT and FcF #######
|
###### MAT and FcF #######
|
||||||
|
|
||||||
|
|
||||||
def normalize_2nd_moment(x, dim=1, eps=1e-8):
|
def normalize_2nd_moment(x, dim=1):
|
||||||
return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()
|
return (
|
||||||
|
x * (x.square().mean(dim=dim, keepdim=True) + torch.finfo(x.dtype).eps).rsqrt()
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class EasyDict(dict):
|
class EasyDict(dict):
|
||||||
@@ -460,7 +462,7 @@ def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
|
|||||||
if f is None:
|
if f is None:
|
||||||
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
||||||
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
||||||
assert f.dtype == torch.float32 and not f.requires_grad
|
assert not f.requires_grad
|
||||||
batch_size, num_channels, in_height, in_width = x.shape
|
batch_size, num_channels, in_height, in_width = x.shape
|
||||||
# upx, upy = _parse_scaling(up)
|
# upx, upy = _parse_scaling(up)
|
||||||
# downx, downy = _parse_scaling(down)
|
# downx, downy = _parse_scaling(down)
|
||||||
@@ -733,9 +735,7 @@ def conv2d_resample(
|
|||||||
# Validate arguments.
|
# Validate arguments.
|
||||||
assert isinstance(x, torch.Tensor) and (x.ndim == 4)
|
assert isinstance(x, torch.Tensor) and (x.ndim == 4)
|
||||||
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
|
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
|
||||||
assert f is None or (
|
assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2])
|
||||||
isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32
|
|
||||||
)
|
|
||||||
assert isinstance(up, int) and (up >= 1)
|
assert isinstance(up, int) and (up >= 1)
|
||||||
assert isinstance(down, int) and (down >= 1)
|
assert isinstance(down, int) and (down >= 1)
|
||||||
# assert isinstance(groups, int) and (groups >= 1), f"!!!!!! groups: {groups} isinstance(groups, int) {isinstance(groups, int)} {type(groups)}"
|
# assert isinstance(groups, int) and (groups >= 1), f"!!!!!! groups: {groups} isinstance(groups, int) {isinstance(groups, int)} {type(groups)}"
|
||||||
|
|||||||
@@ -9,13 +9,18 @@ from lama_cleaner.model_manager import ModelManager
|
|||||||
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler
|
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler
|
||||||
|
|
||||||
current_dir = Path(__file__).parent.absolute().resolve()
|
current_dir = Path(__file__).parent.absolute().resolve()
|
||||||
save_dir = current_dir / 'result'
|
save_dir = current_dir / "result"
|
||||||
save_dir.mkdir(exist_ok=True, parents=True)
|
save_dir.mkdir(exist_ok=True, parents=True)
|
||||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
device = torch.device(device)
|
device = torch.device(device)
|
||||||
|
|
||||||
|
|
||||||
def get_data(fx: float = 1, fy: float = 1.0, img_p=current_dir / "image.png", mask_p=current_dir / "mask.png"):
|
def get_data(
|
||||||
|
fx: float = 1,
|
||||||
|
fy: float = 1.0,
|
||||||
|
img_p=current_dir / "image.png",
|
||||||
|
mask_p=current_dir / "mask.png",
|
||||||
|
):
|
||||||
img = cv2.imread(str(img_p))
|
img = cv2.imread(str(img_p))
|
||||||
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
|
||||||
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
|
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
|
||||||
@@ -37,10 +42,15 @@ def get_config(strategy, **kwargs):
|
|||||||
return Config(**data)
|
return Config(**data)
|
||||||
|
|
||||||
|
|
||||||
def assert_equal(model, config, gt_name,
|
def assert_equal(
|
||||||
fx: float = 1, fy: float = 1,
|
model,
|
||||||
|
config,
|
||||||
|
gt_name,
|
||||||
|
fx: float = 1,
|
||||||
|
fy: float = 1,
|
||||||
img_p=current_dir / "image.png",
|
img_p=current_dir / "image.png",
|
||||||
mask_p=current_dir / "mask.png"):
|
mask_p=current_dir / "mask.png",
|
||||||
|
):
|
||||||
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
|
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
|
||||||
print(f"Input image shape: {img.shape}")
|
print(f"Input image shape: {img.shape}")
|
||||||
res = model(img, mask, config)
|
res = model(img, mask, config)
|
||||||
@@ -59,139 +69,13 @@ def assert_equal(model, config, gt_name,
|
|||||||
# assert np.array_equal(res, gt)
|
# assert np.array_equal(res, gt)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
||||||
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
|
||||||
)
|
|
||||||
def test_lama(strategy):
|
|
||||||
model = ModelManager(name="lama", device=device)
|
|
||||||
assert_equal(
|
|
||||||
model,
|
|
||||||
get_config(strategy),
|
|
||||||
f"lama_{strategy[0].upper() + strategy[1:]}_result.png",
|
|
||||||
)
|
|
||||||
|
|
||||||
fx = 1.3
|
|
||||||
assert_equal(
|
|
||||||
model,
|
|
||||||
get_config(strategy),
|
|
||||||
f"lama_{strategy[0].upper() + strategy[1:]}_fx_{fx}_result.png",
|
|
||||||
fx=1.3,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
|
||||||
)
|
|
||||||
@pytest.mark.parametrize("ldm_sampler", [LDMSampler.ddim, LDMSampler.plms])
|
|
||||||
def test_ldm(strategy, ldm_sampler):
|
|
||||||
model = ModelManager(name="ldm", device=device)
|
|
||||||
cfg = get_config(strategy, ldm_sampler=ldm_sampler)
|
|
||||||
assert_equal(
|
|
||||||
model, cfg, f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_result.png"
|
|
||||||
)
|
|
||||||
|
|
||||||
fx = 1.3
|
|
||||||
assert_equal(
|
|
||||||
model,
|
|
||||||
cfg,
|
|
||||||
f"ldm_{strategy[0].upper() + strategy[1:]}_{ldm_sampler}_fx_{fx}_result.png",
|
|
||||||
fx=fx,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
|
||||||
)
|
|
||||||
@pytest.mark.parametrize("zits_wireframe", [False, True])
|
|
||||||
def test_zits(strategy, zits_wireframe):
|
|
||||||
model = ModelManager(name="zits", device=device)
|
|
||||||
cfg = get_config(strategy, zits_wireframe=zits_wireframe)
|
|
||||||
# os.environ['ZITS_DEBUG_LINE_PATH'] = str(current_dir / 'zits_debug_line.jpg')
|
|
||||||
# os.environ['ZITS_DEBUG_EDGE_PATH'] = str(current_dir / 'zits_debug_edge.jpg')
|
|
||||||
assert_equal(
|
|
||||||
model,
|
|
||||||
cfg,
|
|
||||||
f"zits_{strategy[0].upper() + strategy[1:]}_wireframe_{zits_wireframe}_result.png",
|
|
||||||
)
|
|
||||||
|
|
||||||
fx = 1.3
|
|
||||||
assert_equal(
|
|
||||||
model,
|
|
||||||
cfg,
|
|
||||||
f"zits_{strategy.capitalize()}_wireframe_{zits_wireframe}_fx_{fx}_result.png",
|
|
||||||
fx=fx,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"strategy", [HDStrategy.ORIGINAL]
|
|
||||||
)
|
|
||||||
def test_mat(strategy):
|
def test_mat(strategy):
|
||||||
model = ModelManager(name="mat", device=device)
|
model = ModelManager(name="mat", device=device)
|
||||||
cfg = get_config(strategy)
|
cfg = get_config(strategy)
|
||||||
|
|
||||||
|
for _ in range(10):
|
||||||
assert_equal(
|
assert_equal(
|
||||||
model,
|
model, cfg, f"mat_{strategy.capitalize()}_result.png",
|
||||||
cfg,
|
|
||||||
f"mat_{strategy.capitalize()}_result.png",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"strategy", [HDStrategy.ORIGINAL]
|
|
||||||
)
|
|
||||||
def test_fcf(strategy):
|
|
||||||
model = ModelManager(name="fcf", device=device)
|
|
||||||
cfg = get_config(strategy)
|
|
||||||
|
|
||||||
assert_equal(
|
|
||||||
model,
|
|
||||||
cfg,
|
|
||||||
f"fcf_{strategy.capitalize()}_result.png",
|
|
||||||
fx=2,
|
|
||||||
fy=2
|
|
||||||
)
|
|
||||||
|
|
||||||
assert_equal(
|
|
||||||
model,
|
|
||||||
cfg,
|
|
||||||
f"fcf_{strategy.capitalize()}_result.png",
|
|
||||||
fx=3.8,
|
|
||||||
fy=2
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP]
|
|
||||||
)
|
|
||||||
@pytest.mark.parametrize("cv2_flag", ['INPAINT_NS', 'INPAINT_TELEA'])
|
|
||||||
@pytest.mark.parametrize("cv2_radius", [3, 15])
|
|
||||||
def test_cv2(strategy, cv2_flag, cv2_radius):
|
|
||||||
model = ModelManager(
|
|
||||||
name="cv2",
|
|
||||||
device=torch.device(device),
|
|
||||||
)
|
|
||||||
cfg = get_config(strategy, cv2_flag=cv2_flag, cv2_radius=cv2_radius)
|
|
||||||
assert_equal(
|
|
||||||
model,
|
|
||||||
cfg,
|
|
||||||
f"sd_{strategy.capitalize()}_{cv2_flag}_{cv2_radius}.png",
|
|
||||||
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
||||||
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL, HDStrategy.RESIZE, HDStrategy.CROP])
|
|
||||||
def test_manga(strategy):
|
|
||||||
model = ModelManager(
|
|
||||||
name="manga",
|
|
||||||
device=torch.device(device),
|
|
||||||
)
|
|
||||||
cfg = get_config(strategy)
|
|
||||||
assert_equal(
|
|
||||||
model,
|
|
||||||
cfg,
|
|
||||||
f"sd_{strategy.capitalize()}.png",
|
|
||||||
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
||||||
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
||||||
)
|
|
||||||
|
|||||||
Reference in New Issue
Block a user