lots update

This commit is contained in:
Qing
2023-12-27 22:00:07 +08:00
parent 0ba6c121e0
commit f0b852725f
33 changed files with 4085 additions and 1000 deletions

View File

@@ -5,7 +5,6 @@ import torch
from diffusers import ControlNetModel, DiffusionPipeline
from loguru import logger
from lama_cleaner.const import DIFFUSERS_MODEL_FP16_REVERSION
from lama_cleaner.model.base import DiffusionInpaintModel
from lama_cleaner.model.helper.controlnet_preprocess import (
make_canny_control_image,
@@ -14,8 +13,8 @@ from lama_cleaner.model.helper.controlnet_preprocess import (
make_inpaint_control_image,
)
from lama_cleaner.model.helper.cpu_text_encoder import CPUTextEncoderWrapper
from lama_cleaner.model.utils import get_scheduler
from lama_cleaner.schema import Config, ModelInfo, ModelType
from lama_cleaner.model.utils import get_scheduler, handle_from_pretrained_exceptions
from lama_cleaner.schema import Config, ModelType
class ControlNet(DiffusionInpaintModel):
@@ -39,11 +38,11 @@ class ControlNet(DiffusionInpaintModel):
def init_model(self, device: torch.device, **kwargs):
fp16 = not kwargs.get("no_half", False)
model_info: ModelInfo = kwargs["model_info"]
sd_controlnet_method = kwargs["sd_controlnet_method"]
model_info = kwargs["model_info"]
controlnet_method = kwargs["controlnet_method"]
self.model_info = model_info
self.sd_controlnet_method = sd_controlnet_method
self.controlnet_method = controlnet_method
model_kwargs = {}
if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
@@ -76,7 +75,8 @@ class ControlNet(DiffusionInpaintModel):
)
controlnet = ControlNetModel.from_pretrained(
sd_controlnet_method, torch_dtype=torch_dtype, resume_download=True
pretrained_model_name_or_path=controlnet_method,
resume_download=True,
)
if model_info.is_single_file_diffusers:
if self.model_info.model_type == ModelType.DIFFUSERS_SD:
@@ -88,17 +88,12 @@ class ControlNet(DiffusionInpaintModel):
model_info.path, controlnet=controlnet, **model_kwargs
).to(torch_dtype)
else:
self.model = PipeClass.from_pretrained(
model_info.path,
self.model = handle_from_pretrained_exceptions(
PipeClass.from_pretrained,
pretrained_model_name_or_path=model_info.path,
controlnet=controlnet,
revision="fp16"
if (
model_info.path in DIFFUSERS_MODEL_FP16_REVERSION
and use_gpu
and fp16
)
else "main",
torch_dtype=torch_dtype,
variant="fp16",
dtype=torch_dtype,
**model_kwargs,
)
@@ -116,23 +111,23 @@ class ControlNet(DiffusionInpaintModel):
self.callback = kwargs.pop("callback", None)
def switch_controlnet_method(self, new_method: str):
self.sd_controlnet_method = new_method
self.controlnet_method = new_method
controlnet = ControlNetModel.from_pretrained(
new_method, torch_dtype=self.torch_dtype, resume_download=True
).to(self.model.device)
self.model.controlnet = controlnet
def _get_control_image(self, image, mask):
if "canny" in self.sd_controlnet_method:
if "canny" in self.controlnet_method:
control_image = make_canny_control_image(image)
elif "openpose" in self.sd_controlnet_method:
elif "openpose" in self.controlnet_method:
control_image = make_openpose_control_image(image)
elif "depth" in self.sd_controlnet_method:
elif "depth" in self.controlnet_method:
control_image = make_depth_control_image(image)
elif "inpaint" in self.sd_controlnet_method:
elif "inpaint" in self.controlnet_method:
control_image = make_inpaint_control_image(image, mask)
else:
raise NotImplementedError(f"{self.sd_controlnet_method} not implemented")
raise NotImplementedError(f"{self.controlnet_method} not implemented")
return control_image
def forward(self, image, mask, config: Config):