get samplers from backend
This commit is contained in:
@@ -37,6 +37,7 @@ from lama_cleaner.schema import (
|
||||
SwitchModelRequest,
|
||||
InpaintRequest,
|
||||
RunPluginRequest,
|
||||
SDSampler,
|
||||
)
|
||||
from lama_cleaner.file_manager import FileManager
|
||||
|
||||
@@ -129,6 +130,7 @@ class Api:
|
||||
self.add_api_route("/api/v1/inputimage", self.api_input_image, methods=["GET"])
|
||||
self.add_api_route("/api/v1/inpaint", self.api_inpaint, methods=["POST"])
|
||||
self.add_api_route("/api/v1/run_plugin", self.api_run_plugin, methods=["POST"])
|
||||
self.add_api_route("/api/v1/samplers", self.api_samplers, methods=["GET"])
|
||||
self.app.mount("/", StaticFiles(directory=WEB_APP_DIR, html=True), name="assets")
|
||||
# fmt: on
|
||||
|
||||
@@ -156,6 +158,7 @@ class Api:
|
||||
controlnetMethod=self.model_manager.controlnet_method,
|
||||
disableModelSwitch=self.config.disable_model_switch,
|
||||
isDesktop=self.config.gui,
|
||||
samplers=self.api_samplers(),
|
||||
)
|
||||
|
||||
def api_input_image(self) -> FileResponse:
|
||||
@@ -237,6 +240,9 @@ class Api:
|
||||
media_type=f"image/{ext}",
|
||||
)
|
||||
|
||||
def api_samplers(self) -> List[str]:
|
||||
return [member.value for member in SDSampler.__members__.values()]
|
||||
|
||||
def launch(self):
|
||||
self.app.include_router(self.router)
|
||||
uvicorn.run(
|
||||
|
||||
@@ -2,6 +2,7 @@ import json
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from huggingface_hub.constants import HF_HUB_CACHE
|
||||
from loguru import logger
|
||||
from pathlib import Path
|
||||
|
||||
@@ -101,13 +102,11 @@ def scan_inpaint_models(model_dir: Path) -> List[ModelInfo]:
|
||||
|
||||
|
||||
def scan_models() -> List[ModelInfo]:
|
||||
from diffusers.utils import DIFFUSERS_CACHE
|
||||
|
||||
model_dir = os.getenv("XDG_CACHE_HOME", DEFAULT_MODEL_DIR)
|
||||
available_models = []
|
||||
available_models.extend(scan_inpaint_models(model_dir))
|
||||
available_models.extend(scan_single_file_diffusion_models(model_dir))
|
||||
cache_dir = Path(DIFFUSERS_CACHE)
|
||||
cache_dir = Path(HF_HUB_CACHE)
|
||||
# logger.info(f"Scanning diffusers models in {cache_dir}")
|
||||
diffusers_model_names = []
|
||||
for it in cache_dir.glob("**/*/model_index.json"):
|
||||
|
||||
@@ -35,9 +35,7 @@ class Kandinsky(DiffusionInpaintModel):
|
||||
mask: [H, W, 1] 255 means area to repaint
|
||||
return: BGR IMAGE
|
||||
"""
|
||||
scheduler_config = self.model.scheduler.config
|
||||
scheduler = get_scheduler(config.sd_sampler, scheduler_config)
|
||||
self.model.scheduler = scheduler
|
||||
self.set_scheduler(config)
|
||||
|
||||
generator = torch.manual_seed(config.sd_seed)
|
||||
mask = mask.astype(np.float32) / 255
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import copy
|
||||
import gc
|
||||
import math
|
||||
import random
|
||||
@@ -18,10 +19,13 @@ from diffusers import (
|
||||
DPMSolverMultistepScheduler,
|
||||
UniPCMultistepScheduler,
|
||||
LCMScheduler,
|
||||
DPMSolverSinglestepScheduler,
|
||||
KDPM2DiscreteScheduler,
|
||||
KDPM2AncestralDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
)
|
||||
from huggingface_hub.utils import RevisionNotFoundError
|
||||
from diffusers.configuration_utils import FrozenDict
|
||||
from loguru import logger
|
||||
from requests import HTTPError
|
||||
|
||||
from lama_cleaner.schema import SDSampler
|
||||
from torch import conv2d, conv_transpose2d
|
||||
@@ -930,22 +934,41 @@ def set_seed(seed: int):
|
||||
|
||||
|
||||
def get_scheduler(sd_sampler, scheduler_config):
|
||||
if sd_sampler == SDSampler.ddim:
|
||||
return DDIMScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.pndm:
|
||||
return PNDMScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.k_lms:
|
||||
return LMSDiscreteScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.k_euler:
|
||||
return EulerDiscreteScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.k_euler_a:
|
||||
return EulerAncestralDiscreteScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.dpm_plus_plus:
|
||||
return DPMSolverMultistepScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.uni_pc:
|
||||
return UniPCMultistepScheduler.from_config(scheduler_config)
|
||||
elif sd_sampler == SDSampler.lcm:
|
||||
return LCMScheduler.from_config(scheduler_config)
|
||||
# https://github.com/huggingface/diffusers/issues/4167
|
||||
keys_to_pop = ["use_karras_sigmas", "algorithm_type"]
|
||||
scheduler_config = dict(scheduler_config)
|
||||
for it in keys_to_pop:
|
||||
scheduler_config.pop(it, None)
|
||||
|
||||
# fmt: off
|
||||
samplers = {
|
||||
SDSampler.dpm_plus_plus_2m: [DPMSolverMultistepScheduler],
|
||||
SDSampler.dpm_plus_plus_2m_karras: [DPMSolverMultistepScheduler, dict(use_karras_sigmas=True)],
|
||||
SDSampler.dpm_plus_plus_2m_sde: [DPMSolverMultistepScheduler, dict(algorithm_type="sde-dpmsolver++")],
|
||||
SDSampler.dpm_plus_plus_2m_sde_karras: [DPMSolverMultistepScheduler, dict(algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)],
|
||||
SDSampler.dpm_plus_plus_sde: [DPMSolverSinglestepScheduler],
|
||||
SDSampler.dpm_plus_plus_sde_karras: [DPMSolverSinglestepScheduler, dict(use_karras_sigmas=True)],
|
||||
SDSampler.dpm2: [KDPM2DiscreteScheduler],
|
||||
SDSampler.dpm2_karras: [KDPM2DiscreteScheduler, dict(use_karras_sigmas=True)],
|
||||
SDSampler.dpm2_a: [KDPM2AncestralDiscreteScheduler],
|
||||
SDSampler.dpm2_a_karras: [KDPM2AncestralDiscreteScheduler, dict(use_karras_sigmas=True)],
|
||||
SDSampler.euler: [EulerDiscreteScheduler],
|
||||
SDSampler.euler_a: [EulerAncestralDiscreteScheduler],
|
||||
SDSampler.heun: [HeunDiscreteScheduler],
|
||||
SDSampler.lms: [LMSDiscreteScheduler],
|
||||
SDSampler.lms_karras: [LMSDiscreteScheduler, dict(use_karras_sigmas=True)],
|
||||
SDSampler.ddim: [DDIMScheduler],
|
||||
SDSampler.pndm: [PNDMScheduler],
|
||||
SDSampler.uni_pc: [UniPCMultistepScheduler],
|
||||
SDSampler.lcm: [LCMScheduler],
|
||||
}
|
||||
# fmt: on
|
||||
if sd_sampler in samplers:
|
||||
if len(samplers[sd_sampler]) == 2:
|
||||
scheduler_cls, kwargs = samplers[sd_sampler]
|
||||
else:
|
||||
scheduler_cls, kwargs = samplers[sd_sampler][0], {}
|
||||
return scheduler_cls.from_config(scheduler_config, **kwargs)
|
||||
else:
|
||||
raise ValueError(sd_sampler)
|
||||
|
||||
|
||||
@@ -40,15 +40,26 @@ class LDMSampler(str, Enum):
|
||||
|
||||
|
||||
class SDSampler(str, Enum):
|
||||
ddim = "ddim"
|
||||
pndm = "pndm"
|
||||
k_lms = "k_lms"
|
||||
k_euler = "k_euler"
|
||||
k_euler_a = "k_euler_a"
|
||||
dpm_plus_plus = "dpm++"
|
||||
uni_pc = "uni_pc"
|
||||
dpm_plus_plus_2m = "DPM++ 2M"
|
||||
dpm_plus_plus_2m_karras = "DPM++ 2M Karras"
|
||||
dpm_plus_plus_2m_sde = "DPM++ 2M SDE"
|
||||
dpm_plus_plus_2m_sde_karras = "DPM++ 2M SDE Karras"
|
||||
dpm_plus_plus_sde = "DPM++ SDE"
|
||||
dpm_plus_plus_sde_karras = "DPM++ SDE Karras"
|
||||
dpm2 = "DPM2"
|
||||
dpm2_karras = "DPM2 Karras"
|
||||
dpm2_a = "DPM2 a"
|
||||
dpm2_a_karras = "DPM2 a Karras"
|
||||
euler = "Euler"
|
||||
euler_a = "Euler a"
|
||||
heun = "Heun"
|
||||
lms = "LMS"
|
||||
lms_karras = "LMS Karras"
|
||||
|
||||
lcm = "lcm"
|
||||
ddim = "DDIM"
|
||||
pndm = "PNDM"
|
||||
uni_pc = "UniPC"
|
||||
lcm = "LCM"
|
||||
|
||||
|
||||
class FREEUConfig(BaseModel):
|
||||
@@ -143,7 +154,7 @@ class InpaintRequest(BaseModel):
|
||||
le=1.0,
|
||||
)
|
||||
sd_mask_blur: int = Field(
|
||||
33,
|
||||
11,
|
||||
description="Blur the edge of mask area. The higher the number the smoother blend with the original image",
|
||||
)
|
||||
sd_strength: float = Field(
|
||||
@@ -268,6 +279,7 @@ class ServerConfigResponse(BaseModel):
|
||||
controlnetMethod: Optional[str]
|
||||
disableModelSwitch: bool
|
||||
isDesktop: bool
|
||||
samplers: List[str]
|
||||
|
||||
|
||||
class SwitchModelRequest(BaseModel):
|
||||
|
||||
@@ -49,7 +49,7 @@ def test_outpainting(name, device, rect):
|
||||
extender_width=rect[2],
|
||||
extender_height=rect[3],
|
||||
sd_guidance_scale=8.0,
|
||||
sd_sampler=SDSampler.dpm_plus_plus,
|
||||
sd_sampler=SDSampler.dpm_plus_plus_2m,
|
||||
)
|
||||
|
||||
assert_equal(
|
||||
@@ -92,7 +92,7 @@ def test_kandinsky_outpainting(name, device, rect):
|
||||
extender_width=rect[2],
|
||||
extender_height=rect[3],
|
||||
sd_guidance_scale=7,
|
||||
sd_sampler=SDSampler.dpm_plus_plus,
|
||||
sd_sampler=SDSampler.dpm_plus_plus_2m,
|
||||
)
|
||||
|
||||
assert_equal(
|
||||
@@ -136,7 +136,7 @@ def test_powerpaint_outpainting(name, device, rect):
|
||||
extender_width=rect[2],
|
||||
extender_height=rect[3],
|
||||
sd_guidance_scale=8.0,
|
||||
sd_sampler=SDSampler.dpm_plus_plus,
|
||||
sd_sampler=SDSampler.dpm_plus_plus_2m,
|
||||
powerpaint_task="outpainting",
|
||||
)
|
||||
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
import os
|
||||
|
||||
from loguru import logger
|
||||
|
||||
from lama_cleaner.tests.utils import check_device, get_config, assert_equal
|
||||
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||
@@ -17,21 +19,7 @@ save_dir.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("device", ["cuda", "mps"])
|
||||
@pytest.mark.parametrize(
|
||||
"sampler",
|
||||
[
|
||||
SDSampler.ddim,
|
||||
SDSampler.pndm,
|
||||
SDSampler.k_lms,
|
||||
SDSampler.k_euler,
|
||||
SDSampler.k_euler_a,
|
||||
SDSampler.lcm,
|
||||
],
|
||||
)
|
||||
def test_runway_sd_1_5_all_samplers(
|
||||
device,
|
||||
sampler,
|
||||
):
|
||||
def test_runway_sd_1_5_all_samplers(device):
|
||||
sd_steps = check_device(device)
|
||||
model = ModelManager(
|
||||
name="runwayml/stable-diffusion-inpainting",
|
||||
@@ -39,22 +27,37 @@ def test_runway_sd_1_5_all_samplers(
|
||||
disable_nsfw=True,
|
||||
sd_cpu_textencoder=False,
|
||||
)
|
||||
cfg = get_config(
|
||||
strategy=HDStrategy.ORIGINAL,
|
||||
prompt="a fox sitting on a bench",
|
||||
sd_steps=sd_steps,
|
||||
)
|
||||
cfg.sd_sampler = sampler
|
||||
|
||||
name = f"device_{device}_{sampler}"
|
||||
all_samplers = [member.value for member in SDSampler.__members__.values()]
|
||||
print(all_samplers)
|
||||
for sampler in all_samplers:
|
||||
print(f"Testing sampler {sampler}")
|
||||
if (
|
||||
sampler
|
||||
in [SDSampler.dpm2_karras, SDSampler.dpm2_a_karras, SDSampler.lms_karras]
|
||||
and device == "mps"
|
||||
):
|
||||
# diffusers 0.25.0 still has bug on these sampler on mps, wait main branch released to fix it
|
||||
logger.warning(
|
||||
"skip dpm2_karras on mps, diffusers does not support it on mps. TypeError: Cannot convert a MPS Tensor to float64 dtype as the MPS framework doesn't support float64. Please use float32 instead."
|
||||
)
|
||||
continue
|
||||
cfg = get_config(
|
||||
strategy=HDStrategy.ORIGINAL,
|
||||
prompt="a fox sitting on a bench",
|
||||
sd_steps=sd_steps,
|
||||
sd_sampler=sampler,
|
||||
)
|
||||
|
||||
assert_equal(
|
||||
model,
|
||||
cfg,
|
||||
f"runway_sd_{name}.png",
|
||||
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
||||
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
||||
)
|
||||
name = f"device_{device}_{sampler}"
|
||||
|
||||
assert_equal(
|
||||
model,
|
||||
cfg,
|
||||
f"runway_sd_{name}.png",
|
||||
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
||||
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("device", ["cuda", "mps", "cpu"])
|
||||
@@ -171,7 +174,7 @@ def test_runway_norm_sd_model(device, strategy, sampler):
|
||||
|
||||
@pytest.mark.parametrize("device", ["cuda"])
|
||||
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
||||
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
|
||||
@pytest.mark.parametrize("sampler", [SDSampler.dpm_plus_plus_2m])
|
||||
def test_runway_sd_1_5_cpu_offload(device, strategy, sampler):
|
||||
sd_steps = check_device(device)
|
||||
model = ModelManager(
|
||||
|
||||
@@ -3,7 +3,9 @@ import cv2
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lama_cleaner.helper import encode_pil_to_base64
|
||||
from lama_cleaner.schema import LDMSampler, HDStrategy, InpaintRequest, SDSampler
|
||||
from PIL import Image
|
||||
|
||||
current_dir = Path(__file__).parent.absolute().resolve()
|
||||
save_dir = current_dir / "result"
|
||||
@@ -21,7 +23,7 @@ def check_device(device: str) -> int:
|
||||
|
||||
def assert_equal(
|
||||
model,
|
||||
config,
|
||||
config: InpaintRequest,
|
||||
gt_name,
|
||||
fx: float = 1,
|
||||
fy: float = 1,
|
||||
@@ -29,6 +31,8 @@ def assert_equal(
|
||||
mask_p=current_dir / "mask.png",
|
||||
):
|
||||
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p)
|
||||
config.image = encode_pil_to_base64(Image.fromarray(img), 95, {})[0]
|
||||
config.mask = encode_pil_to_base64(Image.fromarray(mask), 95, {})[0]
|
||||
print(f"Input image shape: {img.shape}")
|
||||
res = model(img, mask, config)
|
||||
ok = cv2.imwrite(
|
||||
@@ -72,4 +76,4 @@ def get_config(**kwargs):
|
||||
hd_strategy_resize_limit=200,
|
||||
)
|
||||
data.update(**kwargs)
|
||||
return InpaintRequest(**data)
|
||||
return InpaintRequest(image="", mask="", **data)
|
||||
|
||||
Reference in New Issue
Block a user