get samplers from backend

This commit is contained in:
Qing
2024-01-02 14:34:36 +08:00
parent a2fd5bb3ea
commit f38be37f8c
14 changed files with 141 additions and 101 deletions

View File

@@ -35,9 +35,7 @@ class Kandinsky(DiffusionInpaintModel):
mask: [H, W, 1] 255 means area to repaint
return: BGR IMAGE
"""
scheduler_config = self.model.scheduler.config
scheduler = get_scheduler(config.sd_sampler, scheduler_config)
self.model.scheduler = scheduler
self.set_scheduler(config)
generator = torch.manual_seed(config.sd_seed)
mask = mask.astype(np.float32) / 255

View File

@@ -1,3 +1,4 @@
import copy
import gc
import math
import random
@@ -18,10 +19,13 @@ from diffusers import (
DPMSolverMultistepScheduler,
UniPCMultistepScheduler,
LCMScheduler,
DPMSolverSinglestepScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
)
from huggingface_hub.utils import RevisionNotFoundError
from diffusers.configuration_utils import FrozenDict
from loguru import logger
from requests import HTTPError
from lama_cleaner.schema import SDSampler
from torch import conv2d, conv_transpose2d
@@ -930,22 +934,41 @@ def set_seed(seed: int):
def get_scheduler(sd_sampler, scheduler_config):
if sd_sampler == SDSampler.ddim:
return DDIMScheduler.from_config(scheduler_config)
elif sd_sampler == SDSampler.pndm:
return PNDMScheduler.from_config(scheduler_config)
elif sd_sampler == SDSampler.k_lms:
return LMSDiscreteScheduler.from_config(scheduler_config)
elif sd_sampler == SDSampler.k_euler:
return EulerDiscreteScheduler.from_config(scheduler_config)
elif sd_sampler == SDSampler.k_euler_a:
return EulerAncestralDiscreteScheduler.from_config(scheduler_config)
elif sd_sampler == SDSampler.dpm_plus_plus:
return DPMSolverMultistepScheduler.from_config(scheduler_config)
elif sd_sampler == SDSampler.uni_pc:
return UniPCMultistepScheduler.from_config(scheduler_config)
elif sd_sampler == SDSampler.lcm:
return LCMScheduler.from_config(scheduler_config)
# https://github.com/huggingface/diffusers/issues/4167
keys_to_pop = ["use_karras_sigmas", "algorithm_type"]
scheduler_config = dict(scheduler_config)
for it in keys_to_pop:
scheduler_config.pop(it, None)
# fmt: off
samplers = {
SDSampler.dpm_plus_plus_2m: [DPMSolverMultistepScheduler],
SDSampler.dpm_plus_plus_2m_karras: [DPMSolverMultistepScheduler, dict(use_karras_sigmas=True)],
SDSampler.dpm_plus_plus_2m_sde: [DPMSolverMultistepScheduler, dict(algorithm_type="sde-dpmsolver++")],
SDSampler.dpm_plus_plus_2m_sde_karras: [DPMSolverMultistepScheduler, dict(algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)],
SDSampler.dpm_plus_plus_sde: [DPMSolverSinglestepScheduler],
SDSampler.dpm_plus_plus_sde_karras: [DPMSolverSinglestepScheduler, dict(use_karras_sigmas=True)],
SDSampler.dpm2: [KDPM2DiscreteScheduler],
SDSampler.dpm2_karras: [KDPM2DiscreteScheduler, dict(use_karras_sigmas=True)],
SDSampler.dpm2_a: [KDPM2AncestralDiscreteScheduler],
SDSampler.dpm2_a_karras: [KDPM2AncestralDiscreteScheduler, dict(use_karras_sigmas=True)],
SDSampler.euler: [EulerDiscreteScheduler],
SDSampler.euler_a: [EulerAncestralDiscreteScheduler],
SDSampler.heun: [HeunDiscreteScheduler],
SDSampler.lms: [LMSDiscreteScheduler],
SDSampler.lms_karras: [LMSDiscreteScheduler, dict(use_karras_sigmas=True)],
SDSampler.ddim: [DDIMScheduler],
SDSampler.pndm: [PNDMScheduler],
SDSampler.uni_pc: [UniPCMultistepScheduler],
SDSampler.lcm: [LCMScheduler],
}
# fmt: on
if sd_sampler in samplers:
if len(samplers[sd_sampler]) == 2:
scheduler_cls, kwargs = samplers[sd_sampler]
else:
scheduler_cls, kwargs = samplers[sd_sampler][0], {}
return scheduler_cls.from_config(scheduler_config, **kwargs)
else:
raise ValueError(sd_sampler)