add ldm model

This commit is contained in:
Sanster
2022-03-04 13:44:53 +08:00
parent f09d40cbef
commit f9b96cf218
7 changed files with 605 additions and 65 deletions

63
main.py
View File

@@ -4,14 +4,14 @@ import argparse
import io
import multiprocessing
import os
import time
from distutils.util import strtobool
from typing import Union
import cv2
import numpy as np
import torch
from lama_cleaner.lama import LaMa
from lama_cleaner.ldm import LDM
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
@@ -24,13 +24,10 @@ from flask import Flask, request, send_file
from flask_cors import CORS
from lama_cleaner.helper import (
download_model,
load_img,
norm_img,
numpy_to_bytes,
pad_img_to_modulo,
resize_max_size,
)
resize_max_size, )
NUM_THREADS = str(multiprocessing.cpu_count())
@@ -55,6 +52,7 @@ device = None
@app.route("/inpaint", methods=["POST"])
def process():
input = request.files
# RGB
image = load_img(input["image"].read())
original_shape = image.shape
interpolation = cv2.INTER_CUBIC
@@ -74,14 +72,7 @@ def process():
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
mask = norm_img(mask)
res_np_img = run(image, mask)
# resize to original size
# res_np_img = cv2.resize(
# res_np_img,
# dsize=(original_shape[1], original_shape[0]),
# interpolation=interpolation,
# )
res_np_img = model(image, mask)
return send_file(
io.BytesIO(numpy_to_bytes(res_np_img)),
@@ -96,35 +87,12 @@ def index():
return send_file(os.path.join(BUILD_DIR, "index.html"))
def run(image, mask):
"""
image: [C, H, W]
mask: [1, H, W]
return: BGR IMAGE
"""
origin_height, origin_width = image.shape[1:]
image = pad_img_to_modulo(image, mod=8)
mask = pad_img_to_modulo(mask, mod=8)
mask = (mask > 0) * 1
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)
start = time.time()
with torch.no_grad():
inpainted_image = model(image, mask)
print(f"process time: {(time.time() - start)*1000}ms")
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
cur_res = cur_res[0:origin_height, 0:origin_width, :]
cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8")
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_BGR2RGB)
return cur_res
def get_args_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--port", default=8080, type=int)
parser.add_argument("--model", default="lama", choices=["lama", "ldm"])
parser.add_argument("--ldm-steps", default=50, type=int, help="Steps for DDIM sampling process."
"The larger the value, the better the result, but it will be more time-consuming")
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--debug", action="store_true")
return parser.parse_args()
@@ -136,16 +104,13 @@ def main():
args = get_args_parser()
device = torch.device(args.device)
if os.environ.get("LAMA_MODEL"):
model_path = os.environ.get("LAMA_MODEL")
if not os.path.exists(model_path):
raise FileNotFoundError(f"lama torchscript model not found: {model_path}")
if args.model == "lama":
model = LaMa(device)
elif args.model == "ldm":
model = LDM(device, steps=args.ldm_steps)
else:
model_path = download_model()
raise NotImplementedError(f"Not supported model: {args.model}")
model = torch.jit.load(model_path, map_location="cpu")
model = model.to(device)
model.eval()
app.run(host="0.0.0.0", port=args.port, debug=args.debug)