remove realesrgan dep
This commit is contained in:
80
iopaint/plugins/basicsr/arch_util.py
Normal file
80
iopaint/plugins/basicsr/arch_util.py
Normal file
@@ -0,0 +1,80 @@
|
||||
from typing import Type, List, Union
|
||||
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
from torch.nn import init as init
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def default_init_weights(
|
||||
module_list: Union[List[nn.Module], nn.Module],
|
||||
scale: float = 1,
|
||||
bias_fill: float = 0,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
"""Initialize network weights.
|
||||
|
||||
Args:
|
||||
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
||||
scale (float): Scale initialized weights, especially for residual
|
||||
blocks. Default: 1.
|
||||
bias_fill (float): The value to fill bias. Default: 0
|
||||
kwargs (dict): Other arguments for initialization function.
|
||||
"""
|
||||
if not isinstance(module_list, list):
|
||||
module_list = [module_list]
|
||||
for module in module_list:
|
||||
for m in module.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
init.kaiming_normal_(m.weight, **kwargs)
|
||||
m.weight.data *= scale
|
||||
if m.bias is not None:
|
||||
m.bias.data.fill_(bias_fill)
|
||||
elif isinstance(m, nn.Linear):
|
||||
init.kaiming_normal_(m.weight, **kwargs)
|
||||
m.weight.data *= scale
|
||||
if m.bias is not None:
|
||||
m.bias.data.fill_(bias_fill)
|
||||
elif isinstance(m, _BatchNorm):
|
||||
init.constant_(m.weight, 1)
|
||||
if m.bias is not None:
|
||||
m.bias.data.fill_(bias_fill)
|
||||
|
||||
|
||||
def make_layer(
|
||||
basic_block: Type[nn.Module], num_basic_block: int, **kwarg
|
||||
) -> nn.Sequential:
|
||||
"""Make layers by stacking the same blocks.
|
||||
|
||||
Args:
|
||||
basic_block (Type[nn.Module]): nn.Module class for basic block.
|
||||
num_basic_block (int): number of blocks.
|
||||
|
||||
Returns:
|
||||
nn.Sequential: Stacked blocks in nn.Sequential.
|
||||
"""
|
||||
layers = []
|
||||
for _ in range(num_basic_block):
|
||||
layers.append(basic_block(**kwarg))
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
||||
# TODO: may write a cpp file
|
||||
def pixel_unshuffle(x: torch.Tensor, scale: int) -> torch.Tensor:
|
||||
"""Pixel unshuffle.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input feature with shape (b, c, hh, hw).
|
||||
scale (int): Downsample ratio.
|
||||
|
||||
Returns:
|
||||
Tensor: the pixel unshuffled feature.
|
||||
"""
|
||||
b, c, hh, hw = x.size()
|
||||
out_channel = c * (scale**2)
|
||||
assert hh % scale == 0 and hw % scale == 0
|
||||
h = hh // scale
|
||||
w = hw // scale
|
||||
x_view = x.view(b, c, h, scale, w, scale)
|
||||
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
||||
Reference in New Issue
Block a user