Files
IOPaint/iopaint/model/kandinsky.py
let5sne 1b87a98261 🎨 完整的 IOPaint 项目更新
## 主要更新
-  更新所有依赖到最新稳定版本
- 📝 添加详细的项目文档和模型推荐
- 🔧 配置 VSCode Cloud Studio 预览功能
- 🐛 修复 PyTorch API 弃用警告

## 依赖更新
- diffusers: 0.27.2 → 0.35.2
- gradio: 4.21.0 → 5.46.0
- peft: 0.7.1 → 0.18.0
- Pillow: 9.5.0 → 11.3.0
- fastapi: 0.108.0 → 0.116.2

## 新增文件
- CLAUDE.md - 项目架构和开发指南
- UPGRADE_NOTES.md - 详细的升级说明
- .vscode/preview.yml - 预览配置
- .vscode/LAUNCH_GUIDE.md - 启动指南
- .gitignore - 更新的忽略规则

## 代码修复
- 修复 iopaint/model/ldm.py 中的 torch.cuda.amp.autocast() 弃用警告

## 文档更新
- README.md - 添加模型推荐和使用指南
- 完整的项目源码(iopaint/)
- Web 前端源码(web_app/)

🤖 Generated with Claude Code
2025-11-28 17:10:24 +00:00

66 lines
2.0 KiB
Python

import PIL.Image
import cv2
import numpy as np
import torch
from iopaint.const import KANDINSKY22_NAME
from .base import DiffusionInpaintModel
from iopaint.schema import InpaintRequest
from .utils import get_torch_dtype, enable_low_mem, is_local_files_only
class Kandinsky(DiffusionInpaintModel):
pad_mod = 64
min_size = 512
def init_model(self, device: torch.device, **kwargs):
from diffusers import AutoPipelineForInpainting
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
model_kwargs = {
"torch_dtype": torch_dtype,
"local_files_only": is_local_files_only(**kwargs),
}
self.model = AutoPipelineForInpainting.from_pretrained(
self.name, **model_kwargs
).to(device)
enable_low_mem(self.model, kwargs.get("low_mem", False))
self.callback = kwargs.pop("callback", None)
def forward(self, image, mask, config: InpaintRequest):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W, 1] 255 means area to repaint
return: BGR IMAGE
"""
self.set_scheduler(config)
generator = torch.manual_seed(config.sd_seed)
mask = mask.astype(np.float32) / 255
img_h, img_w = image.shape[:2]
# kandinsky 没有 strength
output = self.model(
prompt=config.prompt,
negative_prompt=config.negative_prompt,
image=PIL.Image.fromarray(image),
mask_image=mask[:, :, 0],
height=img_h,
width=img_w,
num_inference_steps=config.sd_steps,
guidance_scale=config.sd_guidance_scale,
output_type="np",
callback_on_step_end=self.callback,
generator=generator,
).images[0]
output = (output * 255).round().astype("uint8")
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
return output
class Kandinsky22(Kandinsky):
name = KANDINSKY22_NAME