Files
IOPaint/iopaint/plugins/gfpganer.py
let5sne 1b87a98261 🎨 完整的 IOPaint 项目更新
## 主要更新
-  更新所有依赖到最新稳定版本
- 📝 添加详细的项目文档和模型推荐
- 🔧 配置 VSCode Cloud Studio 预览功能
- 🐛 修复 PyTorch API 弃用警告

## 依赖更新
- diffusers: 0.27.2 → 0.35.2
- gradio: 4.21.0 → 5.46.0
- peft: 0.7.1 → 0.18.0
- Pillow: 9.5.0 → 11.3.0
- fastapi: 0.108.0 → 0.116.2

## 新增文件
- CLAUDE.md - 项目架构和开发指南
- UPGRADE_NOTES.md - 详细的升级说明
- .vscode/preview.yml - 预览配置
- .vscode/LAUNCH_GUIDE.md - 启动指南
- .gitignore - 更新的忽略规则

## 代码修复
- 修复 iopaint/model/ldm.py 中的 torch.cuda.amp.autocast() 弃用警告

## 文档更新
- README.md - 添加模型推荐和使用指南
- 完整的项目源码(iopaint/)
- Web 前端源码(web_app/)

🤖 Generated with Claude Code
2025-11-28 17:10:24 +00:00

157 lines
5.4 KiB
Python

import os
import cv2
import torch
from torchvision.transforms.functional import normalize
from torch.hub import get_dir
from .facexlib.utils.face_restoration_helper import FaceRestoreHelper
from .gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean
from .basicsr.img_util import img2tensor, tensor2img
class MyGFPGANer:
"""Helper for restoration with GFPGAN.
It will detect and crop faces, and then resize the faces to 512x512.
GFPGAN is used to restored the resized faces.
The background is upsampled with the bg_upsampler.
Finally, the faces will be pasted back to the upsample background image.
Args:
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
upscale (float): The upscale of the final output. Default: 2.
arch (str): The GFPGAN architecture. Option: clean | original. Default: clean.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
"""
def __init__(
self,
model_path,
upscale=2,
arch="clean",
channel_multiplier=2,
bg_upsampler=None,
device=None,
):
self.upscale = upscale
self.bg_upsampler = bg_upsampler
# initialize model
self.device = (
torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device is None
else device
)
# initialize the GFP-GAN
if arch == "clean":
self.gfpgan = GFPGANv1Clean(
out_size=512,
num_style_feat=512,
channel_multiplier=channel_multiplier,
decoder_load_path=None,
fix_decoder=False,
num_mlp=8,
input_is_latent=True,
different_w=True,
narrow=1,
sft_half=True,
)
elif arch == "RestoreFormer":
from .gfpgan.archs.restoreformer_arch import RestoreFormer
self.gfpgan = RestoreFormer()
hub_dir = get_dir()
model_dir = os.path.join(hub_dir, "checkpoints")
# initialize face helper
self.face_helper = FaceRestoreHelper(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model="retinaface_resnet50",
save_ext="png",
use_parse=True,
device=self.device,
model_rootpath=model_dir,
)
loadnet = torch.load(model_path)
if "params_ema" in loadnet:
keyname = "params_ema"
else:
keyname = "params"
self.gfpgan.load_state_dict(loadnet[keyname], strict=True)
self.gfpgan.eval()
self.gfpgan = self.gfpgan.to(self.device)
@torch.no_grad()
def enhance(
self,
img,
has_aligned=False,
only_center_face=False,
paste_back=True,
weight=0.5,
):
self.face_helper.clean_all()
if has_aligned: # the inputs are already aligned
img = cv2.resize(img, (512, 512))
self.face_helper.cropped_faces = [img]
else:
self.face_helper.read_image(img)
# get face landmarks for each face
self.face_helper.get_face_landmarks_5(
only_center_face=only_center_face, eye_dist_threshold=5
)
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
# align and warp each face
self.face_helper.align_warp_face()
# face restoration
for cropped_face in self.face_helper.cropped_faces:
# prepare data
cropped_face_t = img2tensor(
cropped_face / 255.0, bgr2rgb=True, float32=True
)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
try:
output = self.gfpgan(cropped_face_t, return_rgb=False, weight=weight)[0]
# convert to image
restored_face = tensor2img(
output.squeeze(0), rgb2bgr=True, min_max=(-1, 1)
)
except RuntimeError as error:
print(f"\tFailed inference for GFPGAN: {error}.")
restored_face = cropped_face
restored_face = restored_face.astype("uint8")
self.face_helper.add_restored_face(restored_face)
if not has_aligned and paste_back:
# upsample the background
if self.bg_upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0]
else:
bg_img = None
self.face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=bg_img
)
return (
self.face_helper.cropped_faces,
self.face_helper.restored_faces,
restored_img,
)
else:
return self.face_helper.cropped_faces, self.face_helper.restored_faces, None