Files
IOPaint/iopaint/plugins/segment_anything/modeling/common.py
let5sne 1b87a98261 🎨 完整的 IOPaint 项目更新
## 主要更新
-  更新所有依赖到最新稳定版本
- 📝 添加详细的项目文档和模型推荐
- 🔧 配置 VSCode Cloud Studio 预览功能
- 🐛 修复 PyTorch API 弃用警告

## 依赖更新
- diffusers: 0.27.2 → 0.35.2
- gradio: 4.21.0 → 5.46.0
- peft: 0.7.1 → 0.18.0
- Pillow: 9.5.0 → 11.3.0
- fastapi: 0.108.0 → 0.116.2

## 新增文件
- CLAUDE.md - 项目架构和开发指南
- UPGRADE_NOTES.md - 详细的升级说明
- .vscode/preview.yml - 预览配置
- .vscode/LAUNCH_GUIDE.md - 启动指南
- .gitignore - 更新的忽略规则

## 代码修复
- 修复 iopaint/model/ldm.py 中的 torch.cuda.amp.autocast() 弃用警告

## 文档更新
- README.md - 添加模型推荐和使用指南
- 完整的项目源码(iopaint/)
- Web 前端源码(web_app/)

🤖 Generated with Claude Code
2025-11-28 17:10:24 +00:00

44 lines
1.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from typing import Type
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x