新增功能: - 精简的API服务实现(api_service_mvp.py) - 专注单一功能:去水印 - 使用LaMa模型 - API Key认证 - 完整的错误处理和日志 - 完整的部署方案 - Docker配置(APIDockerfile) - Docker Compose配置(docker-compose.mvp.yml) - Nginx反向代理配置 - 详尽的文档 - API_SERVICE_GUIDE.md - MVP到商业化完整方案 - API_SERVICE_README.md - 快速开始指南 - API_CLIENT_EXAMPLES.md - 多语言客户端示例(Python/JS/cURL/PHP/Java/Go) 架构特点: - 遵循MVP和KISS原则 - 提供从单机到Kubernetes的扩展路径 - 包含成本分析��收益模型 - 完整的监控和告警方案 🎯 适用场景: - 个人/小团队快速验证产品(月成本¥300-500) - 中小型商业化部署(月成本¥1000-3000) - 大规模生产环境(月成本¥5000+) 🔧 Generated with Claude Code
82 lines
1.9 KiB
YAML
82 lines
1.9 KiB
YAML
version: '3.8'
|
||
|
||
services:
|
||
# ==================== API服务 ====================
|
||
api:
|
||
build:
|
||
context: .
|
||
dockerfile: docker/APIDockerfile
|
||
container_name: iopaint-api
|
||
restart: unless-stopped
|
||
|
||
ports:
|
||
- "8080:8080"
|
||
|
||
environment:
|
||
# API配置
|
||
- API_KEY=${API_KEY:-change_me_in_production}
|
||
- MAX_IMAGE_SIZE=${MAX_IMAGE_SIZE:-4096}
|
||
- ENABLE_METRICS=true
|
||
|
||
# 模型缓存(使用HuggingFace镜像加速下载)
|
||
- HF_ENDPOINT=https://hf-mirror.com
|
||
- HF_HOME=/root/.cache
|
||
|
||
# PyTorch配置
|
||
- PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:512
|
||
|
||
volumes:
|
||
# 模型缓存目录(避免每次重启重新下载模型)
|
||
- ./models:/root/.cache:rw
|
||
|
||
# 日志目录
|
||
- ./logs:/app/logs:rw
|
||
|
||
deploy:
|
||
resources:
|
||
limits:
|
||
cpus: '4'
|
||
memory: 8G
|
||
reservations:
|
||
devices:
|
||
- driver: nvidia
|
||
count: 1
|
||
capabilities: [gpu]
|
||
|
||
# 健康检查
|
||
healthcheck:
|
||
test: ["CMD", "curl", "-f", "http://localhost:8080/api/v1/health"]
|
||
interval: 30s
|
||
timeout: 10s
|
||
retries: 3
|
||
start_period: 60s
|
||
|
||
# ==================== Nginx反向代理(可选)====================
|
||
nginx:
|
||
image: nginx:alpine
|
||
container_name: iopaint-nginx
|
||
restart: unless-stopped
|
||
ports:
|
||
- "80:80"
|
||
- "443:443"
|
||
volumes:
|
||
- ./nginx/nginx.conf:/etc/nginx/nginx.conf:ro
|
||
- ./nginx/ssl:/etc/nginx/ssl:ro # SSL证书目录
|
||
- ./nginx/logs:/var/log/nginx:rw
|
||
depends_on:
|
||
- api
|
||
profiles:
|
||
- production # 使用 docker-compose --profile production up 启动
|
||
|
||
# ==================== 数据卷 ====================
|
||
volumes:
|
||
models:
|
||
driver: local
|
||
logs:
|
||
driver: local
|
||
|
||
# ==================== 网络 ====================
|
||
networks:
|
||
default:
|
||
name: iopaint-network
|