41 lines
1.0 KiB
Python
41 lines
1.0 KiB
Python
import numpy as np
|
|
|
|
|
|
def create_briarmbg2_session():
|
|
from transformers import AutoModelForImageSegmentation
|
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
|
"briaai/RMBG-2.0", trust_remote_code=True
|
|
)
|
|
return birefnet
|
|
|
|
|
|
def briarmbg2_process(device, bgr_np_image, session, only_mask=False):
|
|
from torchvision import transforms
|
|
from PIL import Image
|
|
|
|
transform_image = transforms.Compose(
|
|
[
|
|
transforms.Resize((1024, 1024)),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
]
|
|
)
|
|
|
|
image = Image.fromarray(bgr_np_image)
|
|
image_size = image.size
|
|
input_images = transform_image(image).unsqueeze(0)
|
|
input_images = input_images.to(device)
|
|
|
|
# Prediction
|
|
preds = session(input_images)[-1].sigmoid().cpu()
|
|
pred = preds[0].squeeze()
|
|
pred_pil = transforms.ToPILImage()(pred)
|
|
mask = pred_pil.resize(image_size)
|
|
|
|
if only_mask:
|
|
return np.array(mask)
|
|
|
|
image.putalpha(mask)
|
|
return np.array(image)
|