85 lines
2.2 KiB
Python
85 lines
2.2 KiB
Python
#!/usr/bin/env python3
|
||
"""
|
||
演示 thinking 输出的示例
|
||
|
||
这个脚本展示了在 verbose 模式下,Agent 会同时输出思考过程和执行动作。
|
||
"""
|
||
|
||
from phone_agent import PhoneAgent
|
||
from phone_agent.agent import AgentConfig
|
||
from phone_agent.model import ModelConfig
|
||
|
||
|
||
def main():
|
||
print("="*60)
|
||
print("Phone Agent - Thinking 输出演示")
|
||
print("="*60)
|
||
|
||
# 配置模型
|
||
model_config = ModelConfig(
|
||
base_url="http://localhost:8000/v1",
|
||
model_name="autoglm-phone-9b",
|
||
temperature=0.1,
|
||
)
|
||
|
||
# 配置 Agent (verbose=True 会输出详细信息)
|
||
agent_config = AgentConfig(
|
||
max_steps=10,
|
||
verbose=True, # 开启详细输出
|
||
)
|
||
|
||
# 创建 Agent
|
||
agent = PhoneAgent(
|
||
model_config=model_config,
|
||
agent_config=agent_config,
|
||
)
|
||
|
||
# 执行任务
|
||
print("\n📱 开始执行任务...\n")
|
||
result = agent.run("打开小红书搜索美食攻略")
|
||
|
||
print("\n" + "="*60)
|
||
print(f"📊 最终结果: {result}")
|
||
print("="*60)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
"""
|
||
运行此脚本,你将看到如下格式的输出:
|
||
|
||
==================================================
|
||
💭 思考过程:
|
||
--------------------------------------------------
|
||
当前在系统桌面,需要先启动小红书应用,然后进行搜索
|
||
--------------------------------------------------
|
||
🎯 执行动作:
|
||
{
|
||
"_metadata": "do",
|
||
"action": "Launch",
|
||
"app": "小红书"
|
||
}
|
||
==================================================
|
||
|
||
(执行后会继续下一步...)
|
||
|
||
==================================================
|
||
💭 思考过程:
|
||
--------------------------------------------------
|
||
小红书已打开,现在需要点击搜索框并输入关键词
|
||
--------------------------------------------------
|
||
🎯 执行动作:
|
||
{
|
||
"_metadata": "do",
|
||
"action": "Tap",
|
||
"element": [500, 100]
|
||
}
|
||
==================================================
|
||
|
||
... (更多步骤)
|
||
|
||
🎉 ================================================
|
||
✅ 任务完成: 已成功搜索美食攻略
|
||
==================================================
|
||
"""
|
||
main()
|