Files
Open-AutoGLM/phone_agent/model/client.py
zRzRzRzRzRzRzR 7e1785e08e draft init
2025-12-08 23:54:29 +08:00

169 lines
4.6 KiB
Python

"""Model client for AI inference using OpenAI-compatible API."""
import json
from dataclasses import dataclass, field
from typing import Any
from openai import OpenAI
@dataclass
class ModelConfig:
"""Configuration for the AI model."""
base_url: str = "http://localhost:8000/v1"
api_key: str = "EMPTY"
model_name: str = "autoglm-phone-9b"
max_tokens: int = 3000
temperature: float = 0.0
top_p: float = 0.85
frequency_penalty: float = 0.2
extra_body: dict[str, Any] = field(
default_factory=lambda: {"skip_special_tokens": False}
)
@dataclass
class ModelResponse:
"""Response from the AI model."""
thinking: str
action: str
raw_content: str
class ModelClient:
"""
Client for interacting with OpenAI-compatible vision-language models.
Args:
config: Model configuration.
"""
def __init__(self, config: ModelConfig | None = None):
self.config = config or ModelConfig()
self.client = OpenAI(base_url=self.config.base_url, api_key=self.config.api_key)
def request(self, messages: list[dict[str, Any]]) -> ModelResponse:
"""
Send a request to the model.
Args:
messages: List of message dictionaries in OpenAI format.
Returns:
ModelResponse containing thinking and action.
Raises:
ValueError: If the response cannot be parsed.
"""
response = self.client.chat.completions.create(
messages=messages,
model=self.config.model_name,
max_tokens=self.config.max_tokens,
temperature=self.config.temperature,
top_p=self.config.top_p,
frequency_penalty=self.config.frequency_penalty,
extra_body=self.config.extra_body,
)
raw_content = response.choices[0].message.content
# Parse thinking and action from response
thinking, action = self._parse_response(raw_content)
return ModelResponse(thinking=thinking, action=action, raw_content=raw_content)
def _parse_response(self, content: str) -> tuple[str, str]:
"""
Parse the model response into thinking and action parts.
Args:
content: Raw response content.
Returns:
Tuple of (thinking, action).
"""
if "<answer>" not in content:
return "", content
parts = content.split("<answer>", 1)
thinking = parts[0].replace("<think>", "").replace("</think>", "").strip()
action = parts[1].replace("</answer>", "").strip()
return thinking, action
class MessageBuilder:
"""Helper class for building conversation messages."""
@staticmethod
def create_system_message(content: str) -> dict[str, Any]:
"""Create a system message."""
return {"role": "system", "content": content}
@staticmethod
def create_user_message(
text: str, image_base64: str | None = None
) -> dict[str, Any]:
"""
Create a user message with optional image.
Args:
text: Text content.
image_base64: Optional base64-encoded image.
Returns:
Message dictionary.
"""
content = []
if image_base64:
content.append(
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{image_base64}"},
}
)
content.append({"type": "text", "text": text})
return {"role": "user", "content": content}
@staticmethod
def create_assistant_message(content: str) -> dict[str, Any]:
"""Create an assistant message."""
return {"role": "assistant", "content": content}
@staticmethod
def remove_images_from_message(message: dict[str, Any]) -> dict[str, Any]:
"""
Remove image content from a message to save context space.
Args:
message: Message dictionary.
Returns:
Message with images removed.
"""
if isinstance(message.get("content"), list):
message["content"] = [
item for item in message["content"] if item.get("type") == "text"
]
return message
@staticmethod
def build_screen_info(current_app: str, **extra_info) -> str:
"""
Build screen info string for the model.
Args:
current_app: Current app name.
**extra_info: Additional info to include.
Returns:
JSON string with screen info.
"""
info = {"current_app": current_app, **extra_info}
return json.dumps(info, ensure_ascii=False)