refactor: share memory plugin config helpers

This commit is contained in:
Peter Steinberger
2026-01-18 07:24:07 +00:00
parent faa94f0168
commit 30338ce1a7
3 changed files with 124 additions and 104 deletions

102
extensions/memory/config.ts Normal file
View File

@@ -0,0 +1,102 @@
import { Type } from "@sinclair/typebox";
import { homedir } from "node:os";
import { join } from "node:path";
export type MemoryConfig = {
embedding: {
provider: "openai";
model?: string;
apiKey: string;
};
dbPath?: string;
autoCapture?: boolean;
autoRecall?: boolean;
};
export const MEMORY_CATEGORIES = ["preference", "fact", "decision", "entity", "other"] as const;
export type MemoryCategory = (typeof MEMORY_CATEGORIES)[number];
const DEFAULT_MODEL = "text-embedding-3-small";
const DEFAULT_DB_PATH = join(homedir(), ".clawdbot", "memory", "lancedb");
const EMBEDDING_DIMENSIONS: Record<string, number> = {
"text-embedding-3-small": 1536,
"text-embedding-3-large": 3072,
};
export function vectorDimsForModel(model: string): number {
const dims = EMBEDDING_DIMENSIONS[model];
if (!dims) {
throw new Error(`Unsupported embedding model: ${model}`);
}
return dims;
}
function resolveEnvVars(value: string): string {
return value.replace(/\$\{([^}]+)\}/g, (_, envVar) => {
const envValue = process.env[envVar];
if (!envValue) {
throw new Error(`Environment variable ${envVar} is not set`);
}
return envValue;
});
}
function resolveEmbeddingModel(embedding: Record<string, unknown>): string {
const model = typeof embedding.model === "string" ? embedding.model : DEFAULT_MODEL;
vectorDimsForModel(model);
return model;
}
export const memoryConfigSchema = {
parse(value: unknown): MemoryConfig {
if (!value || typeof value !== "object" || Array.isArray(value)) {
throw new Error("memory config required");
}
const cfg = value as Record<string, unknown>;
const embedding = cfg.embedding as Record<string, unknown> | undefined;
if (!embedding || typeof embedding.apiKey !== "string") {
throw new Error("embedding.apiKey is required");
}
const model = resolveEmbeddingModel(embedding);
return {
embedding: {
provider: "openai",
model,
apiKey: resolveEnvVars(embedding.apiKey),
},
dbPath: typeof cfg.dbPath === "string" ? cfg.dbPath : DEFAULT_DB_PATH,
autoCapture: cfg.autoCapture !== false,
autoRecall: cfg.autoRecall !== false,
};
},
uiHints: {
"embedding.apiKey": {
label: "OpenAI API Key",
sensitive: true,
placeholder: "sk-proj-...",
help: "API key for OpenAI embeddings (or use ${OPENAI_API_KEY})",
},
"embedding.model": {
label: "Embedding Model",
placeholder: DEFAULT_MODEL,
help: "OpenAI embedding model to use",
},
dbPath: {
label: "Database Path",
placeholder: "~/.clawdbot/memory/lancedb",
advanced: true,
},
autoCapture: {
label: "Auto-Capture",
help: "Automatically capture important information from conversations",
},
autoRecall: {
label: "Auto-Recall",
help: "Automatically inject relevant memories into context",
},
},
};

View File

@@ -10,31 +10,26 @@ import { Type } from "@sinclair/typebox";
import * as lancedb from "@lancedb/lancedb";
import OpenAI from "openai";
import { randomUUID } from "node:crypto";
import { homedir } from "node:os";
import { join } from "node:path";
import type { ClawdbotPluginApi } from "clawdbot/plugin-sdk";
import { stringEnum } from "clawdbot/plugin-sdk";
import {
MEMORY_CATEGORIES,
type MemoryCategory,
memoryConfigSchema,
vectorDimsForModel,
} from "./config.js";
// ============================================================================
// Types
// ============================================================================
type MemoryConfig = {
embedding: {
provider: "openai";
model?: string;
apiKey: string;
};
dbPath?: string;
autoCapture?: boolean;
autoRecall?: boolean;
};
type MemoryEntry = {
id: string;
text: string;
vector: number[];
importance: number;
category: "preference" | "fact" | "decision" | "entity" | "other";
category: MemoryCategory;
createdAt: number;
};
@@ -43,91 +38,21 @@ type MemorySearchResult = {
score: number;
};
// ============================================================================
// Config Schema
// ============================================================================
const memoryConfigSchema = {
parse(value: unknown): MemoryConfig {
if (!value || typeof value !== "object" || Array.isArray(value)) {
throw new Error("memory config required");
}
const cfg = value as Record<string, unknown>;
// Embedding config is required
const embedding = cfg.embedding as Record<string, unknown> | undefined;
if (!embedding || typeof embedding.apiKey !== "string") {
throw new Error("embedding.apiKey is required");
}
return {
embedding: {
provider: "openai",
model:
typeof embedding.model === "string"
? embedding.model
: "text-embedding-3-small",
apiKey: resolveEnvVars(embedding.apiKey),
},
dbPath:
typeof cfg.dbPath === "string"
? cfg.dbPath
: join(homedir(), ".clawdbot", "memory", "lancedb"),
autoCapture: cfg.autoCapture !== false,
autoRecall: cfg.autoRecall !== false,
};
},
uiHints: {
"embedding.apiKey": {
label: "OpenAI API Key",
sensitive: true,
placeholder: "sk-proj-...",
help: "API key for OpenAI embeddings (or use ${OPENAI_API_KEY})",
},
"embedding.model": {
label: "Embedding Model",
placeholder: "text-embedding-3-small",
help: "OpenAI embedding model to use",
},
dbPath: {
label: "Database Path",
placeholder: "~/.clawdbot/memory/lancedb",
advanced: true,
},
autoCapture: {
label: "Auto-Capture",
help: "Automatically capture important information from conversations",
},
autoRecall: {
label: "Auto-Recall",
help: "Automatically inject relevant memories into context",
},
},
};
function resolveEnvVars(value: string): string {
return value.replace(/\$\{([^}]+)\}/g, (_, envVar) => {
const envValue = process.env[envVar];
if (!envValue) {
throw new Error(`Environment variable ${envVar} is not set`);
}
return envValue;
});
}
// ============================================================================
// LanceDB Provider
// ============================================================================
const TABLE_NAME = "memories";
const VECTOR_DIM = 1536; // OpenAI text-embedding-3-small
class MemoryDB {
private db: lancedb.Connection | null = null;
private table: lancedb.Table | null = null;
private initPromise: Promise<void> | null = null;
constructor(private readonly dbPath: string) {}
constructor(
private readonly dbPath: string,
private readonly vectorDim: number,
) {}
private async ensureInitialized(): Promise<void> {
if (this.table) return;
@@ -148,7 +73,7 @@ class MemoryDB {
{
id: "__schema__",
text: "",
vector: new Array(VECTOR_DIM).fill(0),
vector: new Array(this.vectorDim).fill(0),
importance: 0,
category: "other",
createdAt: 0,
@@ -274,9 +199,7 @@ function shouldCapture(text: string): boolean {
return MEMORY_TRIGGERS.some((r) => r.test(text));
}
function detectCategory(
text: string,
): "preference" | "fact" | "decision" | "entity" | "other" {
function detectCategory(text: string): MemoryCategory {
const lower = text.toLowerCase();
if (/prefer|radši|like|love|hate|want/i.test(lower)) return "preference";
if (/rozhodli|decided|will use|budeme/i.test(lower)) return "decision";
@@ -299,10 +222,12 @@ const memoryPlugin = {
register(api: ClawdbotPluginApi) {
const cfg = memoryConfigSchema.parse(api.pluginConfig);
const db = new MemoryDB(cfg.dbPath!);
const resolvedDbPath = api.resolvePath(cfg.dbPath!);
const vectorDim = vectorDimsForModel(cfg.embedding.model ?? "text-embedding-3-small");
const db = new MemoryDB(resolvedDbPath, vectorDim);
const embeddings = new Embeddings(cfg.embedding.apiKey, cfg.embedding.model!);
api.logger.info(`memory: plugin registered (db: ${cfg.dbPath}, lazy init)`);
api.logger.info(`memory: plugin registered (db: ${resolvedDbPath}, lazy init)`);
// ========================================================================
// Tools
@@ -369,15 +294,7 @@ const memoryPlugin = {
importance: Type.Optional(
Type.Number({ description: "Importance 0-1 (default: 0.7)" }),
),
category: Type.Optional(
Type.Union([
Type.Literal("preference"),
Type.Literal("fact"),
Type.Literal("decision"),
Type.Literal("entity"),
Type.Literal("other"),
]),
),
category: Type.Optional(stringEnum(MEMORY_CATEGORIES)),
}),
async execute(_toolCallId, params) {
const {
@@ -658,7 +575,7 @@ const memoryPlugin = {
id: "memory",
start: () => {
api.logger.info(
`memory: initialized (db: ${cfg.dbPath}, model: ${cfg.embedding.model})`,
`memory: initialized (db: ${resolvedDbPath}, model: ${cfg.embedding.model})`,
);
},
stop: () => {