feat: add sqlite-vec memory search acceleration

This commit is contained in:
Peter Steinberger
2026-01-17 18:02:25 +00:00
parent 252dfbcd40
commit 5a08471dcd
13 changed files with 432 additions and 7 deletions

View File

@@ -0,0 +1,40 @@
import { DatabaseSync } from "node:sqlite";
import { load, getLoadablePath } from "sqlite-vec";
function vec(values) {
return Buffer.from(new Float32Array(values).buffer);
}
const db = new DatabaseSync(":memory:", { allowExtension: true });
try {
load(db);
} catch (err) {
const message = err instanceof Error ? err.message : String(err);
console.error("sqlite-vec load failed:");
console.error(message);
console.error("expected extension path:", getLoadablePath());
process.exit(1);
}
db.exec(`
CREATE VIRTUAL TABLE v USING vec0(
id TEXT PRIMARY KEY,
embedding FLOAT[4]
);
`);
const insert = db.prepare("INSERT INTO v (id, embedding) VALUES (?, ?)");
insert.run("a", vec([1, 0, 0, 0]));
insert.run("b", vec([0, 1, 0, 0]));
insert.run("c", vec([0.2, 0.2, 0, 0]));
const query = vec([1, 0, 0, 0]);
const rows = db
.prepare(
"SELECT id, vec_distance_cosine(embedding, ?) AS dist FROM v ORDER BY dist ASC"
)
.all(query);
console.log("sqlite-vec ok");
console.log(rows);