feat: add optional llm-task JSON-only tool (#1498)

* feat(llm-task): add optional JSON-only LLM task tool

* fix(llm-task): fix invalid package.json

* fix(llm-task): fix invalid plugin manifest JSON

* fix(llm-task): fix index.ts import quoting

* fix(llm-task): load embedded runner from src or bundled dist
This commit is contained in:
Vignesh
2026-01-23 17:18:47 -08:00
committed by GitHub
parent cb06e133ca
commit 95d45c0aa7
6 changed files with 415 additions and 0 deletions

View File

@@ -0,0 +1,96 @@
import { describe, it, expect, vi, beforeEach } from "vitest";
vi.mock("../../../src/agents/pi-embedded-runner.js", () => {
return {
runEmbeddedPiAgent: vi.fn(async () => ({
meta: { startedAt: Date.now() },
payloads: [{ text: "{}" }],
})),
};
});
import { runEmbeddedPiAgent } from "../../../src/agents/pi-embedded-runner.js";
import { createLlmTaskTool } from "./llm-task-tool.js";
function fakeApi(overrides: any = {}) {
return {
id: "llm-task",
name: "llm-task",
source: "test",
config: { agents: { defaults: { workspace: "/tmp", model: { primary: "openai-codex/gpt-5.2" } } } },
pluginConfig: {},
runtime: { version: "test" },
logger: { debug() {}, info() {}, warn() {}, error() {} },
registerTool() {},
...overrides,
};
}
describe("llm-task tool (json-only)", () => {
beforeEach(() => vi.clearAllMocks());
it("returns parsed json", async () => {
(runEmbeddedPiAgent as any).mockResolvedValueOnce({
meta: {},
payloads: [{ text: JSON.stringify({ foo: "bar" }) }],
});
const tool = createLlmTaskTool(fakeApi() as any);
const res = await tool.execute("id", { prompt: "return foo" });
expect((res as any).details.json).toEqual({ foo: "bar" });
});
it("validates schema", async () => {
(runEmbeddedPiAgent as any).mockResolvedValueOnce({
meta: {},
payloads: [{ text: JSON.stringify({ foo: "bar" }) }],
});
const tool = createLlmTaskTool(fakeApi() as any);
const schema = {
type: "object",
properties: { foo: { type: "string" } },
required: ["foo"],
additionalProperties: false,
};
const res = await tool.execute("id", { prompt: "return foo", schema });
expect((res as any).details.json).toEqual({ foo: "bar" });
});
it("throws on invalid json", async () => {
(runEmbeddedPiAgent as any).mockResolvedValueOnce({ meta: {}, payloads: [{ text: "not-json" }] });
const tool = createLlmTaskTool(fakeApi() as any);
await expect(tool.execute("id", { prompt: "x" })).rejects.toThrow(/invalid json/i);
});
it("throws on schema mismatch", async () => {
(runEmbeddedPiAgent as any).mockResolvedValueOnce({
meta: {},
payloads: [{ text: JSON.stringify({ foo: 1 }) }],
});
const tool = createLlmTaskTool(fakeApi() as any);
const schema = { type: "object", properties: { foo: { type: "string" } }, required: ["foo"] };
await expect(tool.execute("id", { prompt: "x", schema })).rejects.toThrow(/match schema/i);
});
it("passes provider/model overrides to embedded runner", async () => {
(runEmbeddedPiAgent as any).mockResolvedValueOnce({
meta: {},
payloads: [{ text: JSON.stringify({ ok: true }) }],
});
const tool = createLlmTaskTool(fakeApi() as any);
await tool.execute("id", { prompt: "x", provider: "anthropic", model: "claude-4-sonnet" });
const call = (runEmbeddedPiAgent as any).mock.calls[0]?.[0];
expect(call.provider).toBe("anthropic");
expect(call.model).toBe("claude-4-sonnet");
});
it("enforces allowedModels", async () => {
(runEmbeddedPiAgent as any).mockResolvedValueOnce({
meta: {},
payloads: [{ text: JSON.stringify({ ok: true }) }],
});
const tool = createLlmTaskTool(fakeApi({ pluginConfig: { allowedModels: ["openai-codex/gpt-5.2"] } }) as any);
await expect(tool.execute("id", { prompt: "x", provider: "anthropic", model: "claude-4-sonnet" })).rejects.toThrow(
/not allowed/i,
);
});
});