feat(memory): add gemini embeddings + auto select providers

Co-authored-by: Gustavo Madeira Santana <gumadeiras@gmail.com>
This commit is contained in:
Peter Steinberger
2026-01-18 15:29:16 +00:00
parent 7252938339
commit be7191879a
11 changed files with 536 additions and 352 deletions

View File

@@ -1,8 +1,21 @@
import fsSync from "node:fs";
import type { Llama, LlamaEmbeddingContext, LlamaModel } from "node-llama-cpp";
import { resolveApiKeyForProvider } from "../agents/model-auth.js";
import type { ClawdbotConfig } from "../config/config.js";
import { resolveUserPath } from "../utils.js";
import {
createGeminiEmbeddingProvider,
type GeminiEmbeddingClient,
} from "./embeddings-gemini.js";
import {
createOpenAiEmbeddingProvider,
type OpenAiEmbeddingClient,
} from "./embeddings-openai.js";
import { importNodeLlamaCpp } from "./node-llama.js";
export type { GeminiEmbeddingClient } from "./embeddings-gemini.js";
export type { OpenAiEmbeddingClient } from "./embeddings-openai.js";
export type EmbeddingProvider = {
id: string;
model: string;
@@ -12,230 +25,49 @@ export type EmbeddingProvider = {
export type EmbeddingProviderResult = {
provider: EmbeddingProvider;
requestedProvider: "openai" | "gemini" | "local";
fallbackFrom?: "local";
requestedProvider: "openai" | "local" | "gemini" | "auto";
fallbackFrom?: "openai" | "local" | "gemini";
fallbackReason?: string;
openAi?: OpenAiEmbeddingClient;
gemini?: GeminiEmbeddingClient;
};
export type OpenAiEmbeddingClient = {
baseUrl: string;
headers: Record<string, string>;
model: string;
};
export type GeminiEmbeddingClient = {
baseUrl: string;
headers: Record<string, string>;
model: string;
};
export type EmbeddingProviderOptions = {
config: ClawdbotConfig;
agentDir?: string;
provider: "openai" | "gemini" | "local";
provider: "openai" | "local" | "gemini" | "auto";
remote?: {
baseUrl?: string;
apiKey?: string;
headers?: Record<string, string>;
};
model: string;
fallback: "openai" | "none";
fallback: "openai" | "gemini" | "local" | "none";
local?: {
modelPath?: string;
modelCacheDir?: string;
};
};
const DEFAULT_OPENAI_BASE_URL = "https://api.openai.com/v1";
const DEFAULT_LOCAL_MODEL = "hf:ggml-org/embeddinggemma-300M-GGUF/embeddinggemma-300M-Q8_0.gguf";
const DEFAULT_GEMINI_BASE_URL = "https://generativelanguage.googleapis.com/v1beta";
const DEFAULT_GEMINI_MODEL = "gemini-embedding-001";
function normalizeOpenAiModel(model: string): string {
const trimmed = model.trim();
if (!trimmed) return "text-embedding-3-small";
if (trimmed.startsWith("openai/")) return trimmed.slice("openai/".length);
return trimmed;
}
function normalizeGeminiModel(model: string): string {
const trimmed = model.trim();
if (!trimmed) return DEFAULT_GEMINI_MODEL;
if (trimmed.startsWith("models/")) return trimmed.slice("models/".length);
if (trimmed.startsWith("google/")) return trimmed.slice("google/".length);
return trimmed;
}
async function createOpenAiEmbeddingProvider(
options: EmbeddingProviderOptions,
): Promise<{ provider: EmbeddingProvider; client: OpenAiEmbeddingClient }> {
const client = await resolveOpenAiEmbeddingClient(options);
const url = `${client.baseUrl.replace(/\/$/, "")}/embeddings`;
const embed = async (input: string[]): Promise<number[][]> => {
if (input.length === 0) return [];
const res = await fetch(url, {
method: "POST",
headers: client.headers,
body: JSON.stringify({ model: client.model, input }),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`openai embeddings failed: ${res.status} ${text}`);
}
const payload = (await res.json()) as {
data?: Array<{ embedding?: number[] }>;
};
const data = payload.data ?? [];
return data.map((entry) => entry.embedding ?? []);
};
return {
provider: {
id: "openai",
model: client.model,
embedQuery: async (text) => {
const [vec] = await embed([text]);
return vec ?? [];
},
embedBatch: embed,
},
client,
};
}
function extractGeminiEmbeddingValues(entry: unknown): number[] {
if (!entry || typeof entry !== "object") return [];
const record = entry as { values?: unknown; embedding?: { values?: unknown } };
const values = record.values ?? record.embedding?.values;
if (!Array.isArray(values)) return [];
return values.filter((value): value is number => typeof value === "number");
}
function parseGeminiEmbeddings(payload: unknown): number[][] {
if (!payload || typeof payload !== "object") return [];
const data = payload as { embedding?: unknown; embeddings?: unknown[] };
if (Array.isArray(data.embeddings)) {
return data.embeddings.map((entry) => extractGeminiEmbeddingValues(entry));
function canAutoSelectLocal(options: EmbeddingProviderOptions): boolean {
const modelPath = options.local?.modelPath?.trim();
if (!modelPath) return false;
if (/^(hf:|https?:)/i.test(modelPath)) return false;
const resolved = resolveUserPath(modelPath);
try {
return fsSync.statSync(resolved).isFile();
} catch {
return false;
}
if (data.embedding) {
return [extractGeminiEmbeddingValues(data.embedding)];
}
return [];
}
async function createGeminiEmbeddingProvider(
options: EmbeddingProviderOptions,
): Promise<{ provider: EmbeddingProvider; client: GeminiEmbeddingClient }> {
const client = await resolveGeminiEmbeddingClient(options);
const baseUrl = client.baseUrl.replace(/\/$/, "");
const model = `models/${client.model}`;
const embedContent = async (input: string): Promise<number[]> => {
const res = await fetch(`${baseUrl}/${model}:embedContent`, {
method: "POST",
headers: client.headers,
body: JSON.stringify({
model,
content: { parts: [{ text: input }] },
}),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`gemini embeddings failed: ${res.status} ${text}`);
}
const payload = await res.json();
const embeddings = parseGeminiEmbeddings(payload);
return embeddings[0] ?? [];
};
const embedBatch = async (input: string[]): Promise<number[][]> => {
if (input.length === 0) return [];
const res = await fetch(`${baseUrl}/${model}:batchEmbedContents`, {
method: "POST",
headers: client.headers,
body: JSON.stringify({
requests: input.map((text) => ({
model,
content: { parts: [{ text }] },
})),
}),
});
if (!res.ok) {
const text = await res.text();
throw new Error(`gemini embeddings failed: ${res.status} ${text}`);
}
const payload = await res.json();
const embeddings = parseGeminiEmbeddings(payload);
return embeddings;
};
return {
provider: {
id: "gemini",
model: client.model,
embedQuery: embedContent,
embedBatch,
},
client,
};
function isMissingApiKeyError(err: unknown): boolean {
const message = formatError(err);
return message.includes("No API key found for provider");
}
async function resolveOpenAiEmbeddingClient(
options: EmbeddingProviderOptions,
): Promise<OpenAiEmbeddingClient> {
const remote = options.remote;
const remoteApiKey = remote?.apiKey?.trim();
const remoteBaseUrl = remote?.baseUrl?.trim();
const { apiKey } = remoteApiKey
? { apiKey: remoteApiKey }
: await resolveApiKeyForProvider({
provider: "openai",
cfg: options.config,
agentDir: options.agentDir,
});
const providerConfig = options.config.models?.providers?.openai;
const baseUrl = remoteBaseUrl || providerConfig?.baseUrl?.trim() || DEFAULT_OPENAI_BASE_URL;
const headerOverrides = Object.assign({}, providerConfig?.headers, remote?.headers);
const headers: Record<string, string> = {
"Content-Type": "application/json",
Authorization: `Bearer ${apiKey}`,
...headerOverrides,
};
const model = normalizeOpenAiModel(options.model);
return { baseUrl, headers, model };
}
async function resolveGeminiEmbeddingClient(
options: EmbeddingProviderOptions,
): Promise<GeminiEmbeddingClient> {
const remote = options.remote;
const remoteApiKey = remote?.apiKey?.trim();
const remoteBaseUrl = remote?.baseUrl?.trim();
const { apiKey } = remoteApiKey
? { apiKey: remoteApiKey }
: await resolveApiKeyForProvider({
provider: "google",
cfg: options.config,
agentDir: options.agentDir,
});
const providerConfig = options.config.models?.providers?.google;
const baseUrl = remoteBaseUrl || providerConfig?.baseUrl?.trim() || DEFAULT_GEMINI_BASE_URL;
const headerOverrides = Object.assign({}, providerConfig?.headers, remote?.headers);
const headers: Record<string, string> = {
"Content-Type": "application/json",
"x-goog-api-key": apiKey,
...headerOverrides,
};
const model = normalizeGeminiModel(options.model);
return { baseUrl, headers, model };
}
async function createLocalEmbeddingProvider(
options: EmbeddingProviderOptions,
@@ -289,35 +121,80 @@ export async function createEmbeddingProvider(
options: EmbeddingProviderOptions,
): Promise<EmbeddingProviderResult> {
const requestedProvider = options.provider;
if (options.provider === "gemini") {
const { provider, client } = await createGeminiEmbeddingProvider(options);
return { provider, requestedProvider, gemini: client };
}
if (options.provider === "local") {
try {
const fallback = options.fallback;
const createProvider = async (id: "openai" | "local" | "gemini") => {
if (id === "local") {
const provider = await createLocalEmbeddingProvider(options);
return { provider, requestedProvider };
} catch (err) {
const reason = formatLocalSetupError(err);
if (options.fallback === "openai") {
try {
const { provider, client } = await createOpenAiEmbeddingProvider(options);
return {
provider,
requestedProvider,
fallbackFrom: "local",
fallbackReason: reason,
openAi: client,
};
} catch (fallbackErr) {
throw new Error(`${reason}\n\nFallback to OpenAI failed: ${formatError(fallbackErr)}`);
}
}
throw new Error(reason);
return { provider };
}
if (id === "gemini") {
const { provider, client } = await createGeminiEmbeddingProvider(options);
return { provider, gemini: client };
}
const { provider, client } = await createOpenAiEmbeddingProvider(options);
return { provider, openAi: client };
};
const formatPrimaryError = (err: unknown, provider: "openai" | "local" | "gemini") =>
provider === "local" ? formatLocalSetupError(err) : formatError(err);
if (requestedProvider === "auto") {
const missingKeyErrors: string[] = [];
let localError: string | null = null;
if (canAutoSelectLocal(options)) {
try {
const local = await createProvider("local");
return { ...local, requestedProvider };
} catch (err) {
localError = formatLocalSetupError(err);
}
}
for (const provider of ["openai", "gemini"] as const) {
try {
const result = await createProvider(provider);
return { ...result, requestedProvider };
} catch (err) {
const message = formatPrimaryError(err, provider);
if (isMissingApiKeyError(err)) {
missingKeyErrors.push(message);
continue;
}
throw new Error(message);
}
}
const details = [...missingKeyErrors, localError].filter(Boolean) as string[];
if (details.length > 0) {
throw new Error(details.join("\n\n"));
}
throw new Error("No embeddings provider available.");
}
try {
const primary = await createProvider(requestedProvider);
return { ...primary, requestedProvider };
} catch (primaryErr) {
const reason = formatPrimaryError(primaryErr, requestedProvider);
if (fallback && fallback !== "none" && fallback !== requestedProvider) {
try {
const fallbackResult = await createProvider(fallback);
return {
...fallbackResult,
requestedProvider,
fallbackFrom: requestedProvider,
fallbackReason: reason,
};
} catch (fallbackErr) {
throw new Error(
`${reason}\n\nFallback to ${fallback} failed: ${formatError(fallbackErr)}`,
);
}
}
throw new Error(reason);
}
const { provider, client } = await createOpenAiEmbeddingProvider(options);
return { provider, requestedProvider, openAi: client };
}
function formatError(err: unknown): string {