feat: add memory vector search
This commit is contained in:
194
src/memory/embeddings.ts
Normal file
194
src/memory/embeddings.ts
Normal file
@@ -0,0 +1,194 @@
|
||||
import type { Llama, LlamaEmbeddingContext, LlamaModel } from "node-llama-cpp";
|
||||
import { resolveApiKeyForProvider } from "../agents/model-auth.js";
|
||||
import type { ClawdbotConfig } from "../config/config.js";
|
||||
|
||||
export type EmbeddingProvider = {
|
||||
id: string;
|
||||
model: string;
|
||||
embedQuery: (text: string) => Promise<number[]>;
|
||||
embedBatch: (texts: string[]) => Promise<number[][]>;
|
||||
};
|
||||
|
||||
export type EmbeddingProviderResult = {
|
||||
provider: EmbeddingProvider;
|
||||
requestedProvider: "openai" | "local";
|
||||
fallbackFrom?: "local";
|
||||
fallbackReason?: string;
|
||||
};
|
||||
|
||||
export type EmbeddingProviderOptions = {
|
||||
config: ClawdbotConfig;
|
||||
agentDir?: string;
|
||||
provider: "openai" | "local";
|
||||
model: string;
|
||||
fallback: "openai" | "none";
|
||||
local?: {
|
||||
modelPath?: string;
|
||||
modelCacheDir?: string;
|
||||
};
|
||||
};
|
||||
|
||||
const DEFAULT_OPENAI_BASE_URL = "https://api.openai.com/v1";
|
||||
const DEFAULT_LOCAL_MODEL =
|
||||
"hf:ggml-org/embeddinggemma-300M-GGUF/embeddinggemma-300M-Q8_0.gguf";
|
||||
|
||||
function normalizeOpenAiModel(model: string): string {
|
||||
const trimmed = model.trim();
|
||||
if (!trimmed) return "text-embedding-3-small";
|
||||
if (trimmed.startsWith("openai/")) return trimmed.slice("openai/".length);
|
||||
return trimmed;
|
||||
}
|
||||
|
||||
async function createOpenAiEmbeddingProvider(
|
||||
options: EmbeddingProviderOptions,
|
||||
): Promise<EmbeddingProvider> {
|
||||
const { apiKey } = await resolveApiKeyForProvider({
|
||||
provider: "openai",
|
||||
cfg: options.config,
|
||||
agentDir: options.agentDir,
|
||||
});
|
||||
|
||||
const providerConfig = options.config.models?.providers?.openai;
|
||||
const baseUrl = providerConfig?.baseUrl?.trim() || DEFAULT_OPENAI_BASE_URL;
|
||||
const url = `${baseUrl.replace(/\/$/, "")}/embeddings`;
|
||||
const headerOverrides = providerConfig?.headers ?? {};
|
||||
const headers: Record<string, string> = {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${apiKey}`,
|
||||
...headerOverrides,
|
||||
};
|
||||
const model = normalizeOpenAiModel(options.model);
|
||||
|
||||
const embed = async (input: string[]): Promise<number[][]> => {
|
||||
if (input.length === 0) return [];
|
||||
const res = await fetch(url, {
|
||||
method: "POST",
|
||||
headers,
|
||||
body: JSON.stringify({ model, input }),
|
||||
});
|
||||
if (!res.ok) {
|
||||
const text = await res.text();
|
||||
throw new Error(`openai embeddings failed: ${res.status} ${text}`);
|
||||
}
|
||||
const payload = (await res.json()) as {
|
||||
data?: Array<{ embedding?: number[] }>;
|
||||
};
|
||||
const data = payload.data ?? [];
|
||||
return data.map((entry) => entry.embedding ?? []);
|
||||
};
|
||||
|
||||
return {
|
||||
id: "openai",
|
||||
model,
|
||||
embedQuery: async (text) => {
|
||||
const [vec] = await embed([text]);
|
||||
return vec ?? [];
|
||||
},
|
||||
embedBatch: embed,
|
||||
};
|
||||
}
|
||||
|
||||
async function createLocalEmbeddingProvider(
|
||||
options: EmbeddingProviderOptions,
|
||||
): Promise<EmbeddingProvider> {
|
||||
const modelPath = options.local?.modelPath?.trim() || DEFAULT_LOCAL_MODEL;
|
||||
const modelCacheDir = options.local?.modelCacheDir?.trim();
|
||||
|
||||
// Lazy-load node-llama-cpp to keep startup light unless local is enabled.
|
||||
const { getLlama, resolveModelFile, LlamaLogLevel } = await import(
|
||||
"node-llama-cpp"
|
||||
);
|
||||
|
||||
let llama: Llama | null = null;
|
||||
let embeddingModel: LlamaModel | null = null;
|
||||
let embeddingContext: LlamaEmbeddingContext | null = null;
|
||||
|
||||
const ensureContext = async () => {
|
||||
if (!llama) {
|
||||
llama = await getLlama({ logLevel: LlamaLogLevel.error });
|
||||
}
|
||||
if (!embeddingModel) {
|
||||
const resolved = await resolveModelFile(
|
||||
modelPath,
|
||||
modelCacheDir || undefined,
|
||||
);
|
||||
embeddingModel = await llama.loadModel({ modelPath: resolved });
|
||||
}
|
||||
if (!embeddingContext) {
|
||||
embeddingContext = await embeddingModel.createEmbeddingContext();
|
||||
}
|
||||
return embeddingContext;
|
||||
};
|
||||
|
||||
return {
|
||||
id: "local",
|
||||
model: modelPath,
|
||||
embedQuery: async (text) => {
|
||||
const ctx = await ensureContext();
|
||||
const embedding = await ctx.getEmbeddingFor(text);
|
||||
return Array.from(embedding.vector) as number[];
|
||||
},
|
||||
embedBatch: async (texts) => {
|
||||
const ctx = await ensureContext();
|
||||
const embeddings = await Promise.all(
|
||||
texts.map(async (text) => {
|
||||
const embedding = await ctx.getEmbeddingFor(text);
|
||||
return Array.from(embedding.vector) as number[];
|
||||
}),
|
||||
);
|
||||
return embeddings;
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
export async function createEmbeddingProvider(
|
||||
options: EmbeddingProviderOptions,
|
||||
): Promise<EmbeddingProviderResult> {
|
||||
const requestedProvider = options.provider;
|
||||
if (options.provider === "local") {
|
||||
try {
|
||||
const provider = await createLocalEmbeddingProvider(options);
|
||||
return { provider, requestedProvider };
|
||||
} catch (err) {
|
||||
const reason = formatLocalSetupError(err);
|
||||
if (options.fallback === "openai") {
|
||||
try {
|
||||
const provider = await createOpenAiEmbeddingProvider(options);
|
||||
return {
|
||||
provider,
|
||||
requestedProvider,
|
||||
fallbackFrom: "local",
|
||||
fallbackReason: reason,
|
||||
};
|
||||
} catch (fallbackErr) {
|
||||
throw new Error(
|
||||
`${reason}\n\nFallback to OpenAI failed: ${formatError(fallbackErr)}`,
|
||||
);
|
||||
}
|
||||
}
|
||||
throw new Error(reason);
|
||||
}
|
||||
}
|
||||
const provider = await createOpenAiEmbeddingProvider(options);
|
||||
return { provider, requestedProvider };
|
||||
}
|
||||
|
||||
function formatError(err: unknown): string {
|
||||
if (err instanceof Error) return err.message;
|
||||
return String(err);
|
||||
}
|
||||
|
||||
function formatLocalSetupError(err: unknown): string {
|
||||
const detail = formatError(err);
|
||||
return [
|
||||
"Local embeddings unavailable.",
|
||||
detail ? `Reason: ${detail}` : undefined,
|
||||
"To enable local embeddings:",
|
||||
"1) pnpm approve-builds",
|
||||
"2) select node-llama-cpp",
|
||||
"3) pnpm rebuild node-llama-cpp",
|
||||
'Or set agents.defaults.memorySearch.provider = "openai" (remote).',
|
||||
]
|
||||
.filter(Boolean)
|
||||
.join("\n");
|
||||
}
|
||||
Reference in New Issue
Block a user