--- summary: "Run Clawdbot on local LLMs (LM Studio, vLLM, LiteLLM, custom OpenAI endpoints)" read_when: - You want to serve models from your own GPU box - You are wiring LM Studio or an OpenAI-compatible proxy - You need the safest local model guidance --- # Local models Local is doable, but Clawdbot expects large context + strong defenses against prompt injection. Small cards truncate context and leak safety. Aim high: **≥2 maxed-out Mac Studios or equivalent GPU rig (~$30k+)**. A single **24 GB** GPU works only for lighter prompts with higher latency. Use the **largest / full-size model variant you can run**; aggressively quantized or “small” checkpoints raise prompt-injection risk (see [Security](/gateway/security)). ## Recommended: LM Studio + MiniMax M2.1 (Responses API, full-size) Best current local stack. Load MiniMax M2.1 in LM Studio, enable the local server (default `http://127.0.0.1:1234`), and use Responses API to keep reasoning separate from final text. ```json5 { agents: { defaults: { model: { primary: "lmstudio/minimax-m2.1-gs32" }, models: { "anthropic/claude-opus-4-5": { alias: "Opus" }, "lmstudio/minimax-m2.1-gs32": { alias: "Minimax" } } } }, models: { mode: "merge", providers: { lmstudio: { baseUrl: "http://127.0.0.1:1234/v1", apiKey: "lmstudio", api: "openai-responses", models: [ { id: "minimax-m2.1-gs32", name: "MiniMax M2.1 GS32", reasoning: false, input: ["text"], cost: { input: 0, output: 0, cacheRead: 0, cacheWrite: 0 }, contextWindow: 196608, maxTokens: 8192 } ] } } } } ``` **Setup checklist** - Install LM Studio: https://lmstudio.ai - In LM Studio, download the **largest MiniMax M2.1 build available** (avoid “small”/heavily quantized variants), start the server, confirm `http://127.0.0.1:1234/v1/models` lists it. - Keep the model loaded; cold-load adds startup latency. - Adjust `contextWindow`/`maxTokens` if your LM Studio build differs. - For WhatsApp, stick to Responses API so only final text is sent. Keep hosted models configured even when running local; use `models.mode: "merge"` so fallbacks stay available. ### Hybrid config: hosted primary, local fallback ```json5 { agents: { defaults: { model: { primary: "anthropic/claude-sonnet-4-5", fallbacks: ["lmstudio/minimax-m2.1-gs32", "anthropic/claude-opus-4-5"] }, models: { "anthropic/claude-sonnet-4-5": { alias: "Sonnet" }, "lmstudio/minimax-m2.1-gs32": { alias: "MiniMax Local" }, "anthropic/claude-opus-4-5": { alias: "Opus" } } } }, models: { mode: "merge", providers: { lmstudio: { baseUrl: "http://127.0.0.1:1234/v1", apiKey: "lmstudio", api: "openai-responses", models: [ { id: "minimax-m2.1-gs32", name: "MiniMax M2.1 GS32", reasoning: false, input: ["text"], cost: { input: 0, output: 0, cacheRead: 0, cacheWrite: 0 }, contextWindow: 196608, maxTokens: 8192 } ] } } } } ``` ### Local-first with hosted safety net Swap the primary and fallback order; keep the same providers block and `models.mode: "merge"` so you can fall back to Sonnet or Opus when the local box is down. ### Regional hosting / data routing - Hosted MiniMax/Kimi/GLM variants also exist on OpenRouter with region-pinned endpoints (e.g., US-hosted). Pick the regional variant there to keep traffic in your chosen jurisdiction while still using `models.mode: "merge"` for Anthropic/OpenAI fallbacks. - Local-only remains the strongest privacy path; hosted regional routing is the middle ground when you need provider features but want control over data flow. ## Other OpenAI-compatible local proxies vLLM, LiteLLM, OAI-proxy, or custom gateways work if they expose an OpenAI-style `/v1` endpoint. Replace the provider block above with your endpoint and model ID: ```json5 { models: { mode: "merge", providers: { local: { baseUrl: "http://127.0.0.1:8000/v1", apiKey: "sk-local", api: "openai-responses", models: [ { id: "my-local-model", name: "Local Model", reasoning: false, input: ["text"], cost: { input: 0, output: 0, cacheRead: 0, cacheWrite: 0 }, contextWindow: 120000, maxTokens: 8192 } ] } } } } ``` Keep `models.mode: "merge"` so hosted models stay available as fallbacks. ## Troubleshooting - Gateway can reach the proxy? `curl http://127.0.0.1:1234/v1/models`. - LM Studio model unloaded? Reload; cold start is a common “hanging” cause. - Context errors? Lower `contextWindow` or raise your server limit. - Safety: local models skip provider-side filters; keep agents narrow and compaction on to limit prompt injection blast radius.