import fs from "node:fs/promises"; import os from "node:os"; import path from "node:path"; import { fileURLToPath } from "node:url"; import type { AgentMessage, AgentTool, ThinkingLevel, } from "@mariozechner/pi-agent-core"; import type { Api, AssistantMessage, Model } from "@mariozechner/pi-ai"; import { createAgentSession, discoverAuthStorage, discoverModels, SessionManager, SettingsManager, } from "@mariozechner/pi-coding-agent"; import { resolveHeartbeatPrompt } from "../auto-reply/heartbeat.js"; import type { ReasoningLevel, ThinkLevel, VerboseLevel, } from "../auto-reply/thinking.js"; import { formatToolAggregate } from "../auto-reply/tool-meta.js"; import { isCacheEnabled, resolveCacheTtlMs } from "../config/cache-utils.js"; import type { ClawdbotConfig } from "../config/config.js"; import { getMachineDisplayName } from "../infra/machine-name.js"; import { createSubsystemLogger } from "../logging.js"; import { splitMediaFromOutput } from "../media/parse.js"; import { type enqueueCommand, enqueueCommandInLane, } from "../process/command-queue.js"; import { resolveUserPath } from "../utils.js"; import { resolveClawdbotAgentDir } from "./agent-paths.js"; import { markAuthProfileCooldown, markAuthProfileGood, markAuthProfileUsed, } from "./auth-profiles.js"; import type { BashElevatedDefaults } from "./bash-tools.js"; import { DEFAULT_CONTEXT_TOKENS, DEFAULT_MODEL, DEFAULT_PROVIDER, } from "./defaults.js"; import { ensureAuthProfileStore, getApiKeyForModel, resolveAuthProfileOrder, } from "./model-auth.js"; import { ensureClawdbotModelsJson } from "./models-config.js"; import { buildBootstrapContextFiles, type EmbeddedContextFile, ensureSessionHeader, formatAssistantErrorText, isAuthAssistantError, isAuthErrorMessage, isContextOverflowError, isGoogleModelApi, isRateLimitAssistantError, isRateLimitErrorMessage, pickFallbackThinkingLevel, sanitizeGoogleTurnOrdering, sanitizeSessionMessagesImages, validateGeminiTurns, } from "./pi-embedded-helpers.js"; import { type BlockReplyChunking, subscribeEmbeddedPiSession, } from "./pi-embedded-subscribe.js"; import { extractAssistantText, extractAssistantThinking, formatReasoningMarkdown, } from "./pi-embedded-utils.js"; import { setContextPruningRuntime } from "./pi-extensions/context-pruning/runtime.js"; import { computeEffectiveSettings } from "./pi-extensions/context-pruning/settings.js"; import { makeToolPrunablePredicate } from "./pi-extensions/context-pruning/tools.js"; import { toToolDefinitions } from "./pi-tool-definition-adapter.js"; import { createClawdbotCodingTools } from "./pi-tools.js"; import { resolveSandboxContext } from "./sandbox.js"; import { applySkillEnvOverrides, applySkillEnvOverridesFromSnapshot, loadWorkspaceSkillEntries, type SkillSnapshot, } from "./skills.js"; import { buildAgentSystemPrompt } from "./system-prompt.js"; import { normalizeUsage, type UsageLike } from "./usage.js"; import { loadWorkspaceBootstrapFiles } from "./workspace.js"; // Optional features can be implemented as Pi extensions that run in the same Node process. /** * Resolve provider-specific extraParams from model config. * Auto-enables thinking mode for GLM-4.x models unless explicitly disabled. * * For ZAI GLM-4.x models, we auto-enable thinking via the Z.AI Cloud API format: * thinking: { type: "enabled", clear_thinking: boolean } * * - GLM-4.7: Preserved thinking (clear_thinking: false) - reasoning kept across turns * - GLM-4.5/4.6: Interleaved thinking (clear_thinking: true) - reasoning cleared each turn * * Users can override via config: * agents.defaults.models["zai/glm-4.7"].params.thinking = { type: "disabled" } * * Or disable via runtime flag: --thinking off * * @see https://docs.z.ai/guides/capabilities/thinking-mode * @internal Exported for testing only */ export function resolveExtraParams(params: { cfg: ClawdbotConfig | undefined; provider: string; modelId: string; thinkLevel?: string; }): Record | undefined { const modelKey = `${params.provider}/${params.modelId}`; const modelConfig = params.cfg?.agents?.defaults?.models?.[modelKey]; let extraParams = modelConfig?.params ? { ...modelConfig.params } : undefined; // Auto-enable thinking for ZAI GLM-4.x models when not explicitly configured // Skip if user explicitly disabled thinking via --thinking off if (params.provider === "zai" && params.thinkLevel !== "off") { const modelIdLower = params.modelId.toLowerCase(); const isGlm4 = modelIdLower.includes("glm-4"); if (isGlm4) { // Check if user has explicitly configured thinking params const hasThinkingConfig = extraParams?.thinking !== undefined; if (!hasThinkingConfig) { // GLM-4.7 supports preserved thinking (reasoning kept across turns) // GLM-4.5/4.6 use interleaved thinking (reasoning cleared each turn) // Z.AI Cloud API format: thinking: { type: "enabled", clear_thinking: boolean } const isGlm47 = modelIdLower.includes("glm-4.7"); const clearThinking = !isGlm47; extraParams = { ...extraParams, thinking: { type: "enabled", clear_thinking: clearThinking, }, }; log.debug( `auto-enabled thinking for ${modelKey}: type=enabled, clear_thinking=${clearThinking}`, ); } } } return extraParams; } // We configure context pruning per-session via a WeakMap registry keyed by the SessionManager instance. function resolvePiExtensionPath(id: string): string { const self = fileURLToPath(import.meta.url); const dir = path.dirname(self); // In dev this file is `.ts` (tsx), in production it's `.js`. const ext = path.extname(self) === ".ts" ? "ts" : "js"; return path.join(dir, "pi-extensions", `${id}.${ext}`); } function resolveContextWindowTokens(params: { cfg: ClawdbotConfig | undefined; provider: string; modelId: string; model: Model | undefined; }): number { const fromModel = typeof params.model?.contextWindow === "number" && Number.isFinite(params.model.contextWindow) && params.model.contextWindow > 0 ? params.model.contextWindow : undefined; if (fromModel) return fromModel; const fromModelsConfig = (() => { const providers = params.cfg?.models?.providers as | Record< string, { models?: Array<{ id?: string; contextWindow?: number }> } > | undefined; const providerEntry = providers?.[params.provider]; const models = Array.isArray(providerEntry?.models) ? providerEntry.models : []; const match = models.find((m) => m?.id === params.modelId); return typeof match?.contextWindow === "number" && match.contextWindow > 0 ? match.contextWindow : undefined; })(); if (fromModelsConfig) return fromModelsConfig; const fromAgentConfig = typeof params.cfg?.agents?.defaults?.contextTokens === "number" && Number.isFinite(params.cfg.agents.defaults.contextTokens) && params.cfg.agents.defaults.contextTokens > 0 ? Math.floor(params.cfg.agents.defaults.contextTokens) : undefined; if (fromAgentConfig) return fromAgentConfig; return DEFAULT_CONTEXT_TOKENS; } function buildContextPruningExtension(params: { cfg: ClawdbotConfig | undefined; sessionManager: SessionManager; provider: string; modelId: string; model: Model | undefined; }): { additionalExtensionPaths?: string[] } { const raw = params.cfg?.agents?.defaults?.contextPruning; if (raw?.mode !== "adaptive" && raw?.mode !== "aggressive") return {}; const settings = computeEffectiveSettings(raw); if (!settings) return {}; setContextPruningRuntime(params.sessionManager, { settings, contextWindowTokens: resolveContextWindowTokens(params), isToolPrunable: makeToolPrunablePredicate(settings.tools), }); return { additionalExtensionPaths: [resolvePiExtensionPath("context-pruning")], }; } export type EmbeddedPiAgentMeta = { sessionId: string; provider: string; model: string; usage?: { input?: number; output?: number; cacheRead?: number; cacheWrite?: number; total?: number; }; }; export type EmbeddedPiRunMeta = { durationMs: number; agentMeta?: EmbeddedPiAgentMeta; aborted?: boolean; }; function buildModelAliasLines(cfg?: ClawdbotConfig) { const models = cfg?.agents?.defaults?.models ?? {}; const entries: Array<{ alias: string; model: string }> = []; for (const [keyRaw, entryRaw] of Object.entries(models)) { const model = String(keyRaw ?? "").trim(); if (!model) continue; const alias = String( (entryRaw as { alias?: string } | undefined)?.alias ?? "", ).trim(); if (!alias) continue; entries.push({ alias, model }); } return entries .sort((a, b) => a.alias.localeCompare(b.alias)) .map((entry) => `- ${entry.alias}: ${entry.model}`); } type ApiKeyInfo = { apiKey: string; profileId?: string; source: string; }; export type MessagingToolSend = { tool: string; provider: string; accountId?: string; to?: string; }; export type EmbeddedPiRunResult = { payloads?: Array<{ text?: string; mediaUrl?: string; mediaUrls?: string[]; replyToId?: string; isError?: boolean; }>; meta: EmbeddedPiRunMeta; // True if a messaging tool (telegram, whatsapp, discord, slack, sessions_send) // successfully sent a message. Used to suppress agent's confirmation text. didSendViaMessagingTool?: boolean; // Texts successfully sent via messaging tools during the run. messagingToolSentTexts?: string[]; // Messaging tool targets that successfully sent a message during the run. messagingToolSentTargets?: MessagingToolSend[]; }; export type EmbeddedPiCompactResult = { ok: boolean; compacted: boolean; reason?: string; result?: { summary: string; firstKeptEntryId: string; tokensBefore: number; details?: unknown; }; }; type EmbeddedPiQueueHandle = { queueMessage: (text: string) => Promise; isStreaming: () => boolean; isCompacting: () => boolean; abort: () => void; }; const log = createSubsystemLogger("agent/embedded"); const GOOGLE_TURN_ORDERING_CUSTOM_TYPE = "google-turn-ordering-bootstrap"; type CustomEntryLike = { type?: unknown; customType?: unknown }; function hasGoogleTurnOrderingMarker(sessionManager: SessionManager): boolean { try { return sessionManager .getEntries() .some( (entry) => (entry as CustomEntryLike)?.type === "custom" && (entry as CustomEntryLike)?.customType === GOOGLE_TURN_ORDERING_CUSTOM_TYPE, ); } catch { return false; } } function markGoogleTurnOrderingMarker(sessionManager: SessionManager): void { try { sessionManager.appendCustomEntry(GOOGLE_TURN_ORDERING_CUSTOM_TYPE, { timestamp: Date.now(), }); } catch { // ignore marker persistence failures } } export function applyGoogleTurnOrderingFix(params: { messages: AgentMessage[]; modelApi?: string | null; sessionManager: SessionManager; sessionId: string; warn?: (message: string) => void; }): { messages: AgentMessage[]; didPrepend: boolean } { if (!isGoogleModelApi(params.modelApi)) { return { messages: params.messages, didPrepend: false }; } const first = params.messages[0] as | { role?: unknown; content?: unknown } | undefined; if (first?.role !== "assistant") { return { messages: params.messages, didPrepend: false }; } const sanitized = sanitizeGoogleTurnOrdering(params.messages); const didPrepend = sanitized !== params.messages; if (didPrepend && !hasGoogleTurnOrderingMarker(params.sessionManager)) { const warn = params.warn ?? ((message: string) => log.warn(message)); warn( `google turn ordering fixup: prepended user bootstrap (sessionId=${params.sessionId})`, ); markGoogleTurnOrderingMarker(params.sessionManager); } return { messages: sanitized, didPrepend }; } async function sanitizeSessionHistory(params: { messages: AgentMessage[]; modelApi?: string | null; sessionManager: SessionManager; sessionId: string; }): Promise { const sanitizedImages = await sanitizeSessionMessagesImages( params.messages, "session:history", ); return applyGoogleTurnOrderingFix({ messages: sanitizedImages, modelApi: params.modelApi, sessionManager: params.sessionManager, sessionId: params.sessionId, }).messages; } const ACTIVE_EMBEDDED_RUNS = new Map(); type EmbeddedRunWaiter = { resolve: (ended: boolean) => void; timer: NodeJS.Timeout; }; const EMBEDDED_RUN_WAITERS = new Map>(); // ============================================================================ // SessionManager Pre-warming Cache // ============================================================================ type SessionManagerCacheEntry = { sessionFile: string; loadedAt: number; }; const SESSION_MANAGER_CACHE = new Map(); const DEFAULT_SESSION_MANAGER_TTL_MS = 45_000; // 45 seconds function getSessionManagerTtl(): number { return resolveCacheTtlMs({ envValue: process.env.CLAWDBOT_SESSION_MANAGER_CACHE_TTL_MS, defaultTtlMs: DEFAULT_SESSION_MANAGER_TTL_MS, }); } function isSessionManagerCacheEnabled(): boolean { return isCacheEnabled(getSessionManagerTtl()); } function trackSessionManagerAccess(sessionFile: string): void { if (!isSessionManagerCacheEnabled()) return; const now = Date.now(); SESSION_MANAGER_CACHE.set(sessionFile, { sessionFile, loadedAt: now, }); } function isSessionManagerCached(sessionFile: string): boolean { if (!isSessionManagerCacheEnabled()) return false; const entry = SESSION_MANAGER_CACHE.get(sessionFile); if (!entry) return false; const now = Date.now(); const ttl = getSessionManagerTtl(); return now - entry.loadedAt <= ttl; } async function prewarmSessionFile(sessionFile: string): Promise { if (!isSessionManagerCacheEnabled()) return; if (isSessionManagerCached(sessionFile)) return; try { // Read a small chunk to encourage OS page cache warmup. const handle = await fs.open(sessionFile, "r"); try { const buffer = Buffer.alloc(4096); await handle.read(buffer, 0, buffer.length, 0); } finally { await handle.close(); } trackSessionManagerAccess(sessionFile); } catch { // File doesn't exist yet, SessionManager will create it } } const isAbortError = (err: unknown): boolean => { if (!err || typeof err !== "object") return false; const name = "name" in err ? String(err.name) : ""; if (name === "AbortError") return true; const message = "message" in err && typeof err.message === "string" ? err.message.toLowerCase() : ""; return message.includes("aborted"); }; type EmbeddedSandboxInfo = { enabled: boolean; workspaceDir?: string; workspaceAccess?: "none" | "ro" | "rw"; agentWorkspaceMount?: string; browserControlUrl?: string; browserNoVncUrl?: string; }; function resolveSessionLane(key: string) { const cleaned = key.trim() || "main"; return cleaned.startsWith("session:") ? cleaned : `session:${cleaned}`; } function resolveGlobalLane(lane?: string) { const cleaned = lane?.trim(); return cleaned ? cleaned : "main"; } function resolveUserTimezone(configured?: string): string { const trimmed = configured?.trim(); if (trimmed) { try { new Intl.DateTimeFormat("en-US", { timeZone: trimmed }).format( new Date(), ); return trimmed; } catch { // ignore invalid timezone } } const host = Intl.DateTimeFormat().resolvedOptions().timeZone; return host?.trim() || "UTC"; } function formatUserTime(date: Date, timeZone: string): string | undefined { try { const parts = new Intl.DateTimeFormat("en-CA", { timeZone, weekday: "long", year: "numeric", month: "2-digit", day: "2-digit", hour: "2-digit", minute: "2-digit", hourCycle: "h23", }).formatToParts(date); const map: Record = {}; for (const part of parts) { if (part.type !== "literal") map[part.type] = part.value; } if ( !map.weekday || !map.year || !map.month || !map.day || !map.hour || !map.minute ) { return undefined; } return `${map.weekday} ${map.year}-${map.month}-${map.day} ${map.hour}:${map.minute}`; } catch { return undefined; } } function describeUnknownError(error: unknown): string { if (error instanceof Error) return error.message; if (typeof error === "string") return error; try { const serialized = JSON.stringify(error); return serialized ?? "Unknown error"; } catch { return "Unknown error"; } } export function buildEmbeddedSandboxInfo( sandbox?: Awaited>, ): EmbeddedSandboxInfo | undefined { if (!sandbox?.enabled) return undefined; return { enabled: true, workspaceDir: sandbox.workspaceDir, workspaceAccess: sandbox.workspaceAccess, agentWorkspaceMount: sandbox.workspaceAccess === "ro" ? "/agent" : undefined, browserControlUrl: sandbox.browser?.controlUrl, browserNoVncUrl: sandbox.browser?.noVncUrl, }; } function buildEmbeddedSystemPrompt(params: { workspaceDir: string; defaultThinkLevel?: ThinkLevel; extraSystemPrompt?: string; ownerNumbers?: string[]; reasoningTagHint: boolean; heartbeatPrompt?: string; runtimeInfo: { host: string; os: string; arch: string; node: string; model: string; }; sandboxInfo?: EmbeddedSandboxInfo; tools: AgentTool[]; modelAliasLines: string[]; userTimezone: string; userTime?: string; contextFiles?: EmbeddedContextFile[]; }): string { return buildAgentSystemPrompt({ workspaceDir: params.workspaceDir, defaultThinkLevel: params.defaultThinkLevel, extraSystemPrompt: params.extraSystemPrompt, ownerNumbers: params.ownerNumbers, reasoningTagHint: params.reasoningTagHint, heartbeatPrompt: params.heartbeatPrompt, runtimeInfo: params.runtimeInfo, sandboxInfo: params.sandboxInfo, toolNames: params.tools.map((tool) => tool.name), modelAliasLines: params.modelAliasLines, userTimezone: params.userTimezone, userTime: params.userTime, contextFiles: params.contextFiles, }); } export function createSystemPromptOverride( systemPrompt: string, ): (defaultPrompt: string) => string { const trimmed = systemPrompt.trim(); return () => trimmed; } // Tool names are now capitalized (Bash, Read, Write, Edit) to bypass Anthropic's // OAuth token blocking of lowercase names. However, pi-coding-agent's SDK has // hardcoded lowercase names in its built-in tool registry, so we must pass ALL // tools as customTools to bypass the SDK's filtering. type AnyAgentTool = AgentTool; export function splitSdkTools(options: { tools: AnyAgentTool[]; sandboxEnabled: boolean; }): { builtInTools: AnyAgentTool[]; customTools: ReturnType; } { // Always pass all tools as customTools to bypass pi-coding-agent's built-in // tool filtering, which expects lowercase names (bash, read, write, edit). // Our tools are now capitalized (Bash, Read, Write, Edit) for OAuth compatibility. const { tools } = options; return { builtInTools: [], customTools: toToolDefinitions(tools), }; } export function queueEmbeddedPiMessage( sessionId: string, text: string, ): boolean { const handle = ACTIVE_EMBEDDED_RUNS.get(sessionId); if (!handle) return false; if (!handle.isStreaming()) return false; if (handle.isCompacting()) return false; void handle.queueMessage(text); return true; } export function abortEmbeddedPiRun(sessionId: string): boolean { const handle = ACTIVE_EMBEDDED_RUNS.get(sessionId); if (!handle) return false; handle.abort(); return true; } export function isEmbeddedPiRunActive(sessionId: string): boolean { return ACTIVE_EMBEDDED_RUNS.has(sessionId); } export function isEmbeddedPiRunStreaming(sessionId: string): boolean { const handle = ACTIVE_EMBEDDED_RUNS.get(sessionId); if (!handle) return false; return handle.isStreaming(); } export function waitForEmbeddedPiRunEnd( sessionId: string, timeoutMs = 15_000, ): Promise { if (!sessionId || !ACTIVE_EMBEDDED_RUNS.has(sessionId)) return Promise.resolve(true); return new Promise((resolve) => { const waiters = EMBEDDED_RUN_WAITERS.get(sessionId) ?? new Set(); const waiter: EmbeddedRunWaiter = { resolve, timer: setTimeout( () => { waiters.delete(waiter); if (waiters.size === 0) EMBEDDED_RUN_WAITERS.delete(sessionId); resolve(false); }, Math.max(100, timeoutMs), ), }; waiters.add(waiter); EMBEDDED_RUN_WAITERS.set(sessionId, waiters); if (!ACTIVE_EMBEDDED_RUNS.has(sessionId)) { waiters.delete(waiter); if (waiters.size === 0) EMBEDDED_RUN_WAITERS.delete(sessionId); clearTimeout(waiter.timer); resolve(true); } }); } function notifyEmbeddedRunEnded(sessionId: string) { const waiters = EMBEDDED_RUN_WAITERS.get(sessionId); if (!waiters || waiters.size === 0) return; EMBEDDED_RUN_WAITERS.delete(sessionId); for (const waiter of waiters) { clearTimeout(waiter.timer); waiter.resolve(true); } } export function resolveEmbeddedSessionLane(key: string) { return resolveSessionLane(key); } function mapThinkingLevel(level?: ThinkLevel): ThinkingLevel { // pi-agent-core supports "xhigh" too; Clawdbot doesn't surface it for now. if (!level) return "off"; return level; } function resolveModel( provider: string, modelId: string, agentDir?: string, ): { model?: Model; error?: string; authStorage: ReturnType; modelRegistry: ReturnType; } { const resolvedAgentDir = agentDir ?? resolveClawdbotAgentDir(); const authStorage = discoverAuthStorage(resolvedAgentDir); const modelRegistry = discoverModels(authStorage, resolvedAgentDir); const model = modelRegistry.find(provider, modelId) as Model | null; if (!model) { return { error: `Unknown model: ${provider}/${modelId}`, authStorage, modelRegistry, }; } return { model, authStorage, modelRegistry }; } export async function compactEmbeddedPiSession(params: { sessionId: string; sessionKey?: string; messageProvider?: string; agentAccountId?: string; sessionFile: string; workspaceDir: string; agentDir?: string; config?: ClawdbotConfig; skillsSnapshot?: SkillSnapshot; provider?: string; model?: string; thinkLevel?: ThinkLevel; bashElevated?: BashElevatedDefaults; customInstructions?: string; lane?: string; enqueue?: typeof enqueueCommand; extraSystemPrompt?: string; ownerNumbers?: string[]; }): Promise { const sessionLane = resolveSessionLane( params.sessionKey?.trim() || params.sessionId, ); const globalLane = resolveGlobalLane(params.lane); const enqueueGlobal = params.enqueue ?? ((task, opts) => enqueueCommandInLane(globalLane, task, opts)); return enqueueCommandInLane(sessionLane, () => enqueueGlobal(async () => { const resolvedWorkspace = resolveUserPath(params.workspaceDir); const prevCwd = process.cwd(); const provider = (params.provider ?? DEFAULT_PROVIDER).trim() || DEFAULT_PROVIDER; const modelId = (params.model ?? DEFAULT_MODEL).trim() || DEFAULT_MODEL; await ensureClawdbotModelsJson(params.config); const agentDir = params.agentDir ?? resolveClawdbotAgentDir(); const { model, error, authStorage, modelRegistry } = resolveModel( provider, modelId, agentDir, ); if (!model) { return { ok: false, compacted: false, reason: error ?? `Unknown model: ${provider}/${modelId}`, }; } try { const apiKeyInfo = await getApiKeyForModel({ model, cfg: params.config, }); authStorage.setRuntimeApiKey(model.provider, apiKeyInfo.apiKey); } catch (err) { return { ok: false, compacted: false, reason: describeUnknownError(err), }; } await fs.mkdir(resolvedWorkspace, { recursive: true }); const sandboxSessionKey = params.sessionKey?.trim() || params.sessionId; const sandbox = await resolveSandboxContext({ config: params.config, sessionKey: sandboxSessionKey, workspaceDir: resolvedWorkspace, }); const effectiveWorkspace = sandbox?.enabled ? sandbox.workspaceAccess === "rw" ? resolvedWorkspace : sandbox.workspaceDir : resolvedWorkspace; await fs.mkdir(effectiveWorkspace, { recursive: true }); await ensureSessionHeader({ sessionFile: params.sessionFile, sessionId: params.sessionId, cwd: effectiveWorkspace, }); let restoreSkillEnv: (() => void) | undefined; process.chdir(effectiveWorkspace); try { const shouldLoadSkillEntries = !params.skillsSnapshot || !params.skillsSnapshot.resolvedSkills; const skillEntries = shouldLoadSkillEntries ? loadWorkspaceSkillEntries(effectiveWorkspace) : []; restoreSkillEnv = params.skillsSnapshot ? applySkillEnvOverridesFromSnapshot({ snapshot: params.skillsSnapshot, config: params.config, }) : applySkillEnvOverrides({ skills: skillEntries ?? [], config: params.config, }); const bootstrapFiles = await loadWorkspaceBootstrapFiles(effectiveWorkspace); const contextFiles = buildBootstrapContextFiles(bootstrapFiles); const tools = createClawdbotCodingTools({ bash: { ...params.config?.tools?.bash, elevated: params.bashElevated, }, sandbox, messageProvider: params.messageProvider, agentAccountId: params.agentAccountId, sessionKey: params.sessionKey ?? params.sessionId, agentDir, config: params.config, }); const machineName = await getMachineDisplayName(); const runtimeInfo = { host: machineName, os: `${os.type()} ${os.release()}`, arch: os.arch(), node: process.version, model: `${provider}/${modelId}`, }; const sandboxInfo = buildEmbeddedSandboxInfo(sandbox); const reasoningTagHint = provider === "ollama"; const userTimezone = resolveUserTimezone( params.config?.agents?.defaults?.userTimezone, ); const userTime = formatUserTime(new Date(), userTimezone); const appendPrompt = buildEmbeddedSystemPrompt({ workspaceDir: effectiveWorkspace, defaultThinkLevel: params.thinkLevel, extraSystemPrompt: params.extraSystemPrompt, ownerNumbers: params.ownerNumbers, reasoningTagHint, heartbeatPrompt: resolveHeartbeatPrompt( params.config?.agents?.defaults?.heartbeat?.prompt, ), runtimeInfo, sandboxInfo, tools, modelAliasLines: buildModelAliasLines(params.config), userTimezone, userTime, contextFiles, }); const systemPrompt = createSystemPromptOverride(appendPrompt); // Pre-warm session file to bring it into OS page cache await prewarmSessionFile(params.sessionFile); const sessionManager = SessionManager.open(params.sessionFile); trackSessionManagerAccess(params.sessionFile); const settingsManager = SettingsManager.create( effectiveWorkspace, agentDir, ); const pruning = buildContextPruningExtension({ cfg: params.config, sessionManager, provider, modelId, model, }); const additionalExtensionPaths = pruning.additionalExtensionPaths; const { builtInTools, customTools } = splitSdkTools({ tools, sandboxEnabled: !!sandbox?.enabled, }); let session: Awaited>["session"]; ({ session } = await createAgentSession({ cwd: resolvedWorkspace, agentDir, authStorage, modelRegistry, model, thinkingLevel: mapThinkingLevel(params.thinkLevel), systemPrompt, tools: builtInTools, customTools, sessionManager, settingsManager, skills: [], contextFiles: [], additionalExtensionPaths, })); try { const prior = await sanitizeSessionHistory({ messages: session.messages, modelApi: model.api, sessionManager, sessionId: params.sessionId, }); const validated = validateGeminiTurns(prior); if (validated.length > 0) { session.agent.replaceMessages(validated); } const result = await session.compact(params.customInstructions); return { ok: true, compacted: true, result: { summary: result.summary, firstKeptEntryId: result.firstKeptEntryId, tokensBefore: result.tokensBefore, details: result.details, }, }; } finally { session.dispose(); } } catch (err) { return { ok: false, compacted: false, reason: describeUnknownError(err), }; } finally { restoreSkillEnv?.(); process.chdir(prevCwd); } }), ); } export async function runEmbeddedPiAgent(params: { sessionId: string; sessionKey?: string; messageProvider?: string; agentAccountId?: string; sessionFile: string; workspaceDir: string; agentDir?: string; config?: ClawdbotConfig; skillsSnapshot?: SkillSnapshot; prompt: string; provider?: string; model?: string; authProfileId?: string; thinkLevel?: ThinkLevel; verboseLevel?: VerboseLevel; reasoningLevel?: ReasoningLevel; bashElevated?: BashElevatedDefaults; timeoutMs: number; runId: string; abortSignal?: AbortSignal; shouldEmitToolResult?: () => boolean; onPartialReply?: (payload: { text?: string; mediaUrls?: string[]; }) => void | Promise; onBlockReply?: (payload: { text?: string; mediaUrls?: string[]; }) => void | Promise; blockReplyBreak?: "text_end" | "message_end"; blockReplyChunking?: BlockReplyChunking; onReasoningStream?: (payload: { text?: string; mediaUrls?: string[]; }) => void | Promise; onToolResult?: (payload: { text?: string; mediaUrls?: string[]; }) => void | Promise; onAgentEvent?: (evt: { stream: string; data: Record; }) => void; lane?: string; enqueue?: typeof enqueueCommand; extraSystemPrompt?: string; ownerNumbers?: string[]; enforceFinalTag?: boolean; }): Promise { const sessionLane = resolveSessionLane( params.sessionKey?.trim() || params.sessionId, ); const globalLane = resolveGlobalLane(params.lane); const enqueueGlobal = params.enqueue ?? ((task, opts) => enqueueCommandInLane(globalLane, task, opts)); return enqueueCommandInLane(sessionLane, () => enqueueGlobal(async () => { const started = Date.now(); const resolvedWorkspace = resolveUserPath(params.workspaceDir); const prevCwd = process.cwd(); const provider = (params.provider ?? DEFAULT_PROVIDER).trim() || DEFAULT_PROVIDER; const modelId = (params.model ?? DEFAULT_MODEL).trim() || DEFAULT_MODEL; await ensureClawdbotModelsJson(params.config); const agentDir = params.agentDir ?? resolveClawdbotAgentDir(); const { model, error, authStorage, modelRegistry } = resolveModel( provider, modelId, agentDir, ); if (!model) { throw new Error(error ?? `Unknown model: ${provider}/${modelId}`); } const authStore = ensureAuthProfileStore(agentDir); const explicitProfileId = params.authProfileId?.trim(); const profileOrder = resolveAuthProfileOrder({ cfg: params.config, store: authStore, provider, preferredProfile: explicitProfileId, }); if (explicitProfileId && !profileOrder.includes(explicitProfileId)) { throw new Error( `Auth profile "${explicitProfileId}" is not configured for ${provider}.`, ); } const profileCandidates = profileOrder.length > 0 ? profileOrder : [undefined]; let profileIndex = 0; const initialThinkLevel = params.thinkLevel ?? "off"; let thinkLevel = initialThinkLevel; const attemptedThinking = new Set(); let apiKeyInfo: ApiKeyInfo | null = null; let lastProfileId: string | undefined; const resolveApiKeyForCandidate = async (candidate?: string) => { return getApiKeyForModel({ model, cfg: params.config, profileId: candidate, store: authStore, }); }; const applyApiKeyInfo = async (candidate?: string): Promise => { apiKeyInfo = await resolveApiKeyForCandidate(candidate); authStorage.setRuntimeApiKey(model.provider, apiKeyInfo.apiKey); lastProfileId = apiKeyInfo.profileId; }; const advanceAuthProfile = async (): Promise => { let nextIndex = profileIndex + 1; while (nextIndex < profileCandidates.length) { const candidate = profileCandidates[nextIndex]; try { await applyApiKeyInfo(candidate); profileIndex = nextIndex; thinkLevel = initialThinkLevel; attemptedThinking.clear(); return true; } catch (err) { if (candidate && candidate === explicitProfileId) throw err; nextIndex += 1; } } return false; }; try { await applyApiKeyInfo(profileCandidates[profileIndex]); } catch (err) { if (profileCandidates[profileIndex] === explicitProfileId) throw err; const advanced = await advanceAuthProfile(); if (!advanced) throw err; } while (true) { const thinkingLevel = mapThinkingLevel(thinkLevel); attemptedThinking.add(thinkLevel); log.debug( `embedded run start: runId=${params.runId} sessionId=${params.sessionId} provider=${provider} model=${modelId} thinking=${thinkLevel} messageProvider=${params.messageProvider ?? "unknown"}`, ); await fs.mkdir(resolvedWorkspace, { recursive: true }); const sandboxSessionKey = params.sessionKey?.trim() || params.sessionId; const sandbox = await resolveSandboxContext({ config: params.config, sessionKey: sandboxSessionKey, workspaceDir: resolvedWorkspace, }); const effectiveWorkspace = sandbox?.enabled ? sandbox.workspaceAccess === "rw" ? resolvedWorkspace : sandbox.workspaceDir : resolvedWorkspace; await fs.mkdir(effectiveWorkspace, { recursive: true }); await ensureSessionHeader({ sessionFile: params.sessionFile, sessionId: params.sessionId, cwd: effectiveWorkspace, }); let restoreSkillEnv: (() => void) | undefined; process.chdir(effectiveWorkspace); try { const shouldLoadSkillEntries = !params.skillsSnapshot || !params.skillsSnapshot.resolvedSkills; const skillEntries = shouldLoadSkillEntries ? loadWorkspaceSkillEntries(effectiveWorkspace) : []; restoreSkillEnv = params.skillsSnapshot ? applySkillEnvOverridesFromSnapshot({ snapshot: params.skillsSnapshot, config: params.config, }) : applySkillEnvOverrides({ skills: skillEntries ?? [], config: params.config, }); const bootstrapFiles = await loadWorkspaceBootstrapFiles(effectiveWorkspace); const contextFiles = buildBootstrapContextFiles(bootstrapFiles); // Tool schemas must be provider-compatible (OpenAI requires top-level `type: "object"`). // `createClawdbotCodingTools()` normalizes schemas so the session can pass them through unchanged. const tools = createClawdbotCodingTools({ bash: { ...params.config?.tools?.bash, elevated: params.bashElevated, }, sandbox, messageProvider: params.messageProvider, agentAccountId: params.agentAccountId, sessionKey: params.sessionKey ?? params.sessionId, agentDir, config: params.config, }); const machineName = await getMachineDisplayName(); const runtimeInfo = { host: machineName, os: `${os.type()} ${os.release()}`, arch: os.arch(), node: process.version, model: `${provider}/${modelId}`, }; const sandboxInfo = buildEmbeddedSandboxInfo(sandbox); const reasoningTagHint = provider === "ollama"; const userTimezone = resolveUserTimezone( params.config?.agents?.defaults?.userTimezone, ); const userTime = formatUserTime(new Date(), userTimezone); const appendPrompt = buildEmbeddedSystemPrompt({ workspaceDir: effectiveWorkspace, defaultThinkLevel: thinkLevel, extraSystemPrompt: params.extraSystemPrompt, ownerNumbers: params.ownerNumbers, reasoningTagHint, heartbeatPrompt: resolveHeartbeatPrompt( params.config?.agents?.defaults?.heartbeat?.prompt, ), runtimeInfo, sandboxInfo, tools, modelAliasLines: buildModelAliasLines(params.config), userTimezone, userTime, contextFiles, }); const systemPrompt = createSystemPromptOverride(appendPrompt); // Pre-warm session file to bring it into OS page cache await prewarmSessionFile(params.sessionFile); const sessionManager = SessionManager.open(params.sessionFile); trackSessionManagerAccess(params.sessionFile); const settingsManager = SettingsManager.create( effectiveWorkspace, agentDir, ); const pruning = buildContextPruningExtension({ cfg: params.config, sessionManager, provider, modelId, model, }); const additionalExtensionPaths = pruning.additionalExtensionPaths; const { builtInTools, customTools } = splitSdkTools({ tools, sandboxEnabled: !!sandbox?.enabled, }); let session: Awaited< ReturnType >["session"]; ({ session } = await createAgentSession({ cwd: resolvedWorkspace, agentDir, authStorage, modelRegistry, model, thinkingLevel, systemPrompt, // Built-in tools recognized by pi-coding-agent SDK tools: builtInTools, // Custom clawdbot tools (browser, canvas, nodes, cron, etc.) customTools, sessionManager, settingsManager, skills: [], contextFiles: [], additionalExtensionPaths, })); try { const prior = await sanitizeSessionHistory({ messages: session.messages, modelApi: model.api, sessionManager, sessionId: params.sessionId, }); const validated = validateGeminiTurns(prior); if (validated.length > 0) { session.agent.replaceMessages(validated); } } catch (err) { session.dispose(); throw err; } let aborted = Boolean(params.abortSignal?.aborted); let timedOut = false; const abortRun = (isTimeout = false) => { aborted = true; if (isTimeout) timedOut = true; void session.abort(); }; let subscription: ReturnType; try { subscription = subscribeEmbeddedPiSession({ session, runId: params.runId, verboseLevel: params.verboseLevel, reasoningMode: params.reasoningLevel ?? "off", shouldEmitToolResult: params.shouldEmitToolResult, onToolResult: params.onToolResult, onReasoningStream: params.onReasoningStream, onBlockReply: params.onBlockReply, blockReplyBreak: params.blockReplyBreak, blockReplyChunking: params.blockReplyChunking, onPartialReply: params.onPartialReply, onAgentEvent: params.onAgentEvent, enforceFinalTag: params.enforceFinalTag, }); } catch (err) { session.dispose(); throw err; } const { assistantTexts, toolMetas, unsubscribe, waitForCompactionRetry, getMessagingToolSentTexts, getMessagingToolSentTargets, didSendViaMessagingTool, } = subscription; const queueHandle: EmbeddedPiQueueHandle = { queueMessage: async (text: string) => { await session.steer(text); }, isStreaming: () => session.isStreaming, isCompacting: () => subscription.isCompacting(), abort: abortRun, }; ACTIVE_EMBEDDED_RUNS.set(params.sessionId, queueHandle); let abortWarnTimer: NodeJS.Timeout | undefined; const abortTimer = setTimeout( () => { log.warn( `embedded run timeout: runId=${params.runId} sessionId=${params.sessionId} timeoutMs=${params.timeoutMs}`, ); abortRun(true); if (!abortWarnTimer) { abortWarnTimer = setTimeout(() => { if (!session.isStreaming) return; log.warn( `embedded run abort still streaming: runId=${params.runId} sessionId=${params.sessionId}`, ); }, 10_000); } }, Math.max(1, params.timeoutMs), ); let messagesSnapshot: AgentMessage[] = []; let sessionIdUsed = session.sessionId; const onAbort = () => { abortRun(); }; if (params.abortSignal) { if (params.abortSignal.aborted) { onAbort(); } else { params.abortSignal.addEventListener("abort", onAbort, { once: true, }); } } let promptError: unknown = null; try { const promptStartedAt = Date.now(); log.debug( `embedded run prompt start: runId=${params.runId} sessionId=${params.sessionId}`, ); try { await session.prompt(params.prompt); } catch (err) { promptError = err; } finally { log.debug( `embedded run prompt end: runId=${params.runId} sessionId=${params.sessionId} durationMs=${Date.now() - promptStartedAt}`, ); } try { await waitForCompactionRetry(); } catch (err) { // Capture AbortError from waitForCompactionRetry to enable fallback/rotation. if (isAbortError(err)) { if (!promptError) promptError = err; } else { throw err; } } messagesSnapshot = session.messages.slice(); sessionIdUsed = session.sessionId; } finally { clearTimeout(abortTimer); if (abortWarnTimer) { clearTimeout(abortWarnTimer); abortWarnTimer = undefined; } unsubscribe(); if (ACTIVE_EMBEDDED_RUNS.get(params.sessionId) === queueHandle) { ACTIVE_EMBEDDED_RUNS.delete(params.sessionId); notifyEmbeddedRunEnded(params.sessionId); } session.dispose(); params.abortSignal?.removeEventListener?.("abort", onAbort); } if (promptError && !aborted) { const errorText = describeUnknownError(promptError); if (isContextOverflowError(errorText)) { return { payloads: [ { text: "Context overflow: the conversation history is too large for the model. " + "Use /new or /reset to start a fresh session, or try a model with a larger context window.", isError: true, }, ], meta: { durationMs: Date.now() - started, agentMeta: { sessionId: sessionIdUsed, provider, model: model.id, }, }, }; } if ( (isAuthErrorMessage(errorText) || isRateLimitErrorMessage(errorText)) && (await advanceAuthProfile()) ) { continue; } const fallbackThinking = pickFallbackThinkingLevel({ message: errorText, attempted: attemptedThinking, }); if (fallbackThinking) { log.warn( `unsupported thinking level for ${provider}/${modelId}; retrying with ${fallbackThinking}`, ); thinkLevel = fallbackThinking; continue; } throw promptError; } const lastAssistant = messagesSnapshot .slice() .reverse() .find((m) => (m as AgentMessage)?.role === "assistant") as | AssistantMessage | undefined; const fallbackThinking = pickFallbackThinkingLevel({ message: lastAssistant?.errorMessage, attempted: attemptedThinking, }); if (fallbackThinking && !aborted) { log.warn( `unsupported thinking level for ${provider}/${modelId}; retrying with ${fallbackThinking}`, ); thinkLevel = fallbackThinking; continue; } const fallbackConfigured = (params.config?.agents?.defaults?.model?.fallbacks?.length ?? 0) > 0; const authFailure = isAuthAssistantError(lastAssistant); const rateLimitFailure = isRateLimitAssistantError(lastAssistant); // Treat timeout as potential rate limit (Antigravity hangs on rate limit) const shouldRotate = (!aborted && (authFailure || rateLimitFailure)) || timedOut; if (shouldRotate) { // Mark current profile for cooldown before rotating if (lastProfileId) { await markAuthProfileCooldown({ store: authStore, profileId: lastProfileId, }); if (timedOut) { log.warn( `Profile ${lastProfileId} timed out (possible rate limit). Trying next account...`, ); } } const rotated = await advanceAuthProfile(); if (rotated) { continue; } if (fallbackConfigured) { const message = lastAssistant?.errorMessage?.trim() || (lastAssistant ? formatAssistantErrorText(lastAssistant) : "") || (timedOut ? "LLM request timed out." : rateLimitFailure ? "LLM request rate limited." : "LLM request unauthorized."); throw new Error(message); } } const usage = normalizeUsage(lastAssistant?.usage as UsageLike); const agentMeta: EmbeddedPiAgentMeta = { sessionId: sessionIdUsed, provider: lastAssistant?.provider ?? provider, model: lastAssistant?.model ?? model.id, usage, }; const replyItems: Array<{ text: string; media?: string[]; isError?: boolean; }> = []; const errorText = lastAssistant ? formatAssistantErrorText(lastAssistant) : undefined; if (errorText) replyItems.push({ text: errorText, isError: true }); const inlineToolResults = params.verboseLevel === "on" && !params.onPartialReply && !params.onToolResult && toolMetas.length > 0; if (inlineToolResults) { for (const { toolName, meta } of toolMetas) { const agg = formatToolAggregate(toolName, meta ? [meta] : []); const { text: cleanedText, mediaUrls } = splitMediaFromOutput(agg); if (cleanedText) replyItems.push({ text: cleanedText, media: mediaUrls }); } } const fallbackText = lastAssistant ? (() => { const base = extractAssistantText(lastAssistant); if (params.reasoningLevel !== "on") return base; const thinking = extractAssistantThinking(lastAssistant); const formatted = thinking ? formatReasoningMarkdown(thinking) : ""; if (!formatted) return base; return base ? `${formatted}\n\n${base}` : formatted; })() : ""; for (const text of assistantTexts.length ? assistantTexts : fallbackText ? [fallbackText] : []) { const { text: cleanedText, mediaUrls } = splitMediaFromOutput(text); if (!cleanedText && (!mediaUrls || mediaUrls.length === 0)) continue; replyItems.push({ text: cleanedText, media: mediaUrls }); } const payloads = replyItems .map((item) => ({ text: item.text?.trim() ? item.text.trim() : undefined, mediaUrls: item.media?.length ? item.media : undefined, mediaUrl: item.media?.[0], isError: item.isError, })) .filter( (p) => p.text || p.mediaUrl || (p.mediaUrls && p.mediaUrls.length > 0), ); log.debug( `embedded run done: runId=${params.runId} sessionId=${params.sessionId} durationMs=${Date.now() - started} aborted=${aborted}`, ); if (lastProfileId) { await markAuthProfileGood({ store: authStore, provider, profileId: lastProfileId, }); // Track usage for round-robin rotation await markAuthProfileUsed({ store: authStore, profileId: lastProfileId, }); } return { payloads: payloads.length ? payloads : undefined, meta: { durationMs: Date.now() - started, agentMeta, aborted, }, didSendViaMessagingTool: didSendViaMessagingTool(), messagingToolSentTexts: getMessagingToolSentTexts(), messagingToolSentTargets: getMessagingToolSentTargets(), }; } finally { restoreSkillEnv?.(); process.chdir(prevCwd); } } }), ); }