Files
clawdbot/apps/macos/Sources/Clawdis/Resources/WebChat/utils/model-discovery.js
2025-12-06 05:01:28 +01:00

243 lines
9.4 KiB
JavaScript

import { LMStudioClient } from "@lmstudio/sdk";
import { Ollama } from "ollama/browser";
/**
* Discover models from an Ollama server.
* @param baseUrl - Base URL of the Ollama server (e.g., "http://localhost:11434")
* @param apiKey - Optional API key (currently unused by Ollama)
* @returns Array of discovered models
*/
export async function discoverOllamaModels(baseUrl, _apiKey) {
try {
// Create Ollama client
const ollama = new Ollama({ host: baseUrl });
// Get list of available models
const { models } = await ollama.list();
// Fetch details for each model and convert to Model format
const ollamaModelPromises = models.map(async (model) => {
try {
// Get model details
const details = await ollama.show({
model: model.name,
});
// Check capabilities - filter out models that don't support tools
const capabilities = details.capabilities || [];
if (!capabilities.includes("tools")) {
console.debug(`Skipping model ${model.name}: does not support tools`);
return null;
}
// Extract model info
const modelInfo = details.model_info || {};
// Get context window size - look for architecture-specific keys
const architecture = modelInfo["general.architecture"] || "";
const contextKey = `${architecture}.context_length`;
const contextWindow = parseInt(modelInfo[contextKey] || "8192", 10);
// Ollama caps max tokens at 10x context length
const maxTokens = contextWindow * 10;
// Ollama only supports completions API
const ollamaModel = {
id: model.name,
name: model.name,
api: "openai-completions",
provider: "", // Will be set by caller
baseUrl: `${baseUrl}/v1`,
reasoning: capabilities.includes("thinking"),
input: ["text"],
cost: {
input: 0,
output: 0,
cacheRead: 0,
cacheWrite: 0,
},
contextWindow: contextWindow,
maxTokens: maxTokens,
};
return ollamaModel;
}
catch (err) {
console.error(`Failed to fetch details for model ${model.name}:`, err);
return null;
}
});
const results = await Promise.all(ollamaModelPromises);
return results.filter((m) => m !== null);
}
catch (err) {
console.error("Failed to discover Ollama models:", err);
throw new Error(`Ollama discovery failed: ${err instanceof Error ? err.message : String(err)}`);
}
}
/**
* Discover models from a llama.cpp server via OpenAI-compatible /v1/models endpoint.
* @param baseUrl - Base URL of the llama.cpp server (e.g., "http://localhost:8080")
* @param apiKey - Optional API key
* @returns Array of discovered models
*/
export async function discoverLlamaCppModels(baseUrl, apiKey) {
try {
const headers = {
"Content-Type": "application/json",
};
if (apiKey) {
headers.Authorization = `Bearer ${apiKey}`;
}
const response = await fetch(`${baseUrl}/v1/models`, {
method: "GET",
headers,
});
if (!response.ok) {
throw new Error(`HTTP ${response.status}: ${response.statusText}`);
}
const data = await response.json();
if (!data.data || !Array.isArray(data.data)) {
throw new Error("Invalid response format from llama.cpp server");
}
return data.data.map((model) => {
// llama.cpp doesn't always provide context window info
const contextWindow = model.context_length || 8192;
const maxTokens = model.max_tokens || 4096;
const llamaModel = {
id: model.id,
name: model.id,
api: "openai-completions",
provider: "", // Will be set by caller
baseUrl: `${baseUrl}/v1`,
reasoning: false,
input: ["text"],
cost: {
input: 0,
output: 0,
cacheRead: 0,
cacheWrite: 0,
},
contextWindow: contextWindow,
maxTokens: maxTokens,
};
return llamaModel;
});
}
catch (err) {
console.error("Failed to discover llama.cpp models:", err);
throw new Error(`llama.cpp discovery failed: ${err instanceof Error ? err.message : String(err)}`);
}
}
/**
* Discover models from a vLLM server via OpenAI-compatible /v1/models endpoint.
* @param baseUrl - Base URL of the vLLM server (e.g., "http://localhost:8000")
* @param apiKey - Optional API key
* @returns Array of discovered models
*/
export async function discoverVLLMModels(baseUrl, apiKey) {
try {
const headers = {
"Content-Type": "application/json",
};
if (apiKey) {
headers.Authorization = `Bearer ${apiKey}`;
}
const response = await fetch(`${baseUrl}/v1/models`, {
method: "GET",
headers,
});
if (!response.ok) {
throw new Error(`HTTP ${response.status}: ${response.statusText}`);
}
const data = await response.json();
if (!data.data || !Array.isArray(data.data)) {
throw new Error("Invalid response format from vLLM server");
}
return data.data.map((model) => {
// vLLM provides max_model_len which is the context window
const contextWindow = model.max_model_len || 8192;
const maxTokens = Math.min(contextWindow, 4096); // Cap max tokens
const vllmModel = {
id: model.id,
name: model.id,
api: "openai-completions",
provider: "", // Will be set by caller
baseUrl: `${baseUrl}/v1`,
reasoning: false,
input: ["text"],
cost: {
input: 0,
output: 0,
cacheRead: 0,
cacheWrite: 0,
},
contextWindow: contextWindow,
maxTokens: maxTokens,
};
return vllmModel;
});
}
catch (err) {
console.error("Failed to discover vLLM models:", err);
throw new Error(`vLLM discovery failed: ${err instanceof Error ? err.message : String(err)}`);
}
}
/**
* Discover models from an LM Studio server using the LM Studio SDK.
* @param baseUrl - Base URL of the LM Studio server (e.g., "http://localhost:1234")
* @param apiKey - Optional API key (unused for LM Studio SDK)
* @returns Array of discovered models
*/
export async function discoverLMStudioModels(baseUrl, _apiKey) {
try {
// Extract host and port from baseUrl
const url = new URL(baseUrl);
const port = url.port ? parseInt(url.port, 10) : 1234;
// Create LM Studio client
const client = new LMStudioClient({ baseUrl: `ws://${url.hostname}:${port}` });
// List all downloaded models
const models = await client.system.listDownloadedModels();
// Filter to only LLM models and map to our Model format
return models
.filter((model) => model.type === "llm")
.map((model) => {
const contextWindow = model.maxContextLength;
// Use 10x context length like Ollama does
const maxTokens = contextWindow;
const lmStudioModel = {
id: model.path,
name: model.displayName || model.path,
api: "openai-completions",
provider: "", // Will be set by caller
baseUrl: `${baseUrl}/v1`,
reasoning: model.trainedForToolUse || false,
input: model.vision ? ["text", "image"] : ["text"],
cost: {
input: 0,
output: 0,
cacheRead: 0,
cacheWrite: 0,
},
contextWindow: contextWindow,
maxTokens: maxTokens,
};
return lmStudioModel;
});
}
catch (err) {
console.error("Failed to discover LM Studio models:", err);
throw new Error(`LM Studio discovery failed: ${err instanceof Error ? err.message : String(err)}`);
}
}
/**
* Convenience function to discover models based on provider type.
* @param type - Provider type
* @param baseUrl - Base URL of the server
* @param apiKey - Optional API key
* @returns Array of discovered models
*/
export async function discoverModels(type, baseUrl, apiKey) {
switch (type) {
case "ollama":
return discoverOllamaModels(baseUrl, apiKey);
case "llama.cpp":
return discoverLlamaCppModels(baseUrl, apiKey);
case "vllm":
return discoverVLLMModels(baseUrl, apiKey);
case "lmstudio":
return discoverLMStudioModels(baseUrl, apiKey);
}
}
//# sourceMappingURL=model-discovery.js.map